Высшая математика в примерах и задачах - Том 1 - Черненко В.Д.


Книга Высшая математика в примерах и задачах - Том 1 - Черненко В.Д.

Название: Высшая математика в примерах и задачах - Том 1. 2003.
Автор: Черненко В.Д.
    Предлагаемое учебное пособие содержит краткий теоретический материал, а также большое количество примеров, иллюстрирующих основные методы решения.


    В плане изучения высшей математики наибольшие трудности возникают при решении конкретных задач и примеров, которые требуют знание определенных методов и приемов.
   Цель книги - помочь студентам научиться самостоятельно решать задачи по курсу высшей математики. Изучение теории должно производится по рекомендованному в программе или учебным заведением учебнику.
  Каждый параграф начинается с краткого теоретического введения, приводятся основные определения, теоремы без доказательств, главнейшие формулы, методы и способы решения задач. Решение типовых примеров и задач в параграфе, как правило, расположено по возрастающей трудности.
ОГЛАВЛЕНИЕ. Том 1.
ПРЕДИСЛОВИЕ 8
Глава 1
ОПРЕДЕЛИТЕЛИ И МАТРИЦЫ. СИСТЕМЫ ЛИНЕЙНЫХ УРАВНЕНИЙ 11
1.1. Определители. Способы вычисления
1.2 Системы линейныых уравнений. Правило Крамера 22
1.3. Основные определения теории матриц. Сложение и умножение матриц 31
1.4. Транспонирование матрицы 39
1.5. Обратная матрица 41
1.6. Матричный метод решения системы линейных уравнений 45
1.7. Решение системы линейных уравнений методом исключения (метод Гаусса) 46
1.8. Ранг матрицы 50
1.9. Решение системы линейных уравнений. Теорема Кронекера-Капелли 55
Глава 2
ВЕКТОРНАЯ АЛГЕБРА 63
2.1. Векторные и сг.алярные величины. Линейные операции над векторами
2.2. Разложение вектора по координатным осям 72
2.3. Скалярное произведение 78
2.4. Векторное произведение 85
2.5. Смешанное произведение векторов 89
Глава 3
АНАЛИТИЧЕСКАЯ ГЕОМЕТРИЯ НА ПЛОСКОСТИ 95
3.1. Координаты точки на прямой и на плоскости. Длина и направление отрезка
3.2. Деление отрезка в данном отношении. Площадь треугольника и многоугольника. Центр тяжести 99
3.3. Уравнения прямой линии. Геометрическое истолкование неравенства и системы неравенств первой степени 106
3.4. Задачи на прямую линию 116
3.5. Уравнение линии как геометрического места точек 132
3.6. Кривые второго порядка 136
3.7. Преобразование декартовых координат 153
3.8. Полярная система координат. Уравнения кривых 161
3.9. Параметрические уравнения плоских кривых 170
Глава 4
АНАЛИТИЧЕСКАЯ ГЕОМЕТРИЯ В ПРОСТРАНСТВЕ 173
4.1. Системы координат
4.2. Плоскость 175
4.3. Прямая линия 182
4.4. Прямая и плоскость 186
4.5. Поверхности второго порядка 191
4.6. Геометрический смысл уравнений с тремя неизвестными в пространстве 203
4.7. Параметрические уравнения пространственных кривых ..207
Глава 5
ЭЛЕМЕНТЫ ЛИНЕЙНОЙ АЛГЕБРЫ 209
5.1. Линейные преобразования
5.2. Разложение векторов по базису. Арифметические векторы 214
5.3. Собственные числа и собственные векторы матрицы 220
5.4. Квадратичные формы и их приведение к каноническому виду 223
Глава 6
ВВЕДЕНИЕ В МАТЕМАТИЧЕСКИЙ АНАЛИЗ 227
6.1. Множества и операции над ними 227
6.2. Логическая символика 229
6.3. Понятие о функции 230
6.4. Вычисление пределов. Раскрытие неопределенностей 239
6.5. Непрерывность и точки разрыва функции 252
Глава 7
ДИФФЕРЕНЦИАЛЬНОЕ ИСЧИСЛЕНИЕ ФУНКЦИИ ОДНОЙ ПЕРЕМЕННОЙ 265
7.1. Вычисление производных
7.2. Производные функций, не являющихся явно заданными ..279
7.3. Производные высших порядков 284
7.4. Дифференциал функции 296
7.5. Приложения производной к задачам геометрии и физики... 3 04
7.6. Теоремы о среднем 315
7.7. Раскрытие неопределенностей по правилу Лопиталя 320
7.8. Возрастание и убывание функций 325
7.9. Максимум и минимум функции 329
7.10. Наибольшее и наименьшее значение функции 336
7.11. Решение задач на максимум и минимум 340
7.12. Направление выпуклости кривой. Точки перегиба 354
7.13. Асимптоты кривой 357
7.14. Исследование функции и построение графиков 365
7.15. Формула Тейлора и Маклорена 378
Глава 8
ДИФФЕРЕНЦИАЛЬНОЕ ИСЧИСЛЕНИЕ ФУНКЦИЙ НЕСКОЛЬКИХ ПЕРЕМЕННЫХ 387
8.1. Понятие о функции нескольких переменных. Область определения
8.2. Предел функции нескольких переменных. Непрерывность 392
8.3. Частные производные первого порядка 394
8.4. Дифференциал функции и его применение к приближенным вычислениям 399
8.5. Частные производные и дифференциалы высших порядков 404
8.6. Дифференцирование сложных функций 411
8.7. Дифференцирование неявных и параметрически заданных функций 415
8.8. Замена переменных в дифференциальных выражениях... 429
8.9. Экстремум функции 435
8.10. Наибольшие и наименьшие значения функций 443
8.11. Условный экстремум. Метод множителей Лагранжа 450
Глава 9
ПРИЛОЖЕНИЯ ДИФФЕРЕНЦИАЛЬНОГО ИСЧИСЛЕНИЯ К ГЕОМЕТРИИ 457
9.1. Касательная и нормаль к плоской кривой
9.2. Касательная плоскость и нормаль к поверхности 460
9.3. Кривизна плоской кривой 470
9.4. Особые точки плоских кривых 483
9.5. Касание кривых между собой 488
9.6. Производная вектор-функции 493
9.7. Естественный трёхгранник пространственной кривой. Касательная и нормальная плоскость к пространственной кривой 500
9.8. Кривизна и кручение пространственной кривой 508
Глава 10
НЕОПРЕДЕЛЕННЫЙ ИНТЕГРАЛ 513
10.1. Первообразная функция и неопределенный интеграл. Свойства неопределенного интеграла. Таблица основных интегралов и простейшие примеры
10.2. Непосредственное интегрирование 520
10.3. Интегрирование методом замены переменной 524
10.4. Интегрирование по частям 531
10.5. Интегралы от функций, содержащих квадратный трехчлен 538
10.6. Интегрирование рациональных дробей 547
10.7. Интегралы от иррациональных функций 560
10.8. Интегрирование тригонометрических функций 572
10.9. Интегрирование гиперболических функций 578
10.10. Задачи, приводящие к понятию неопределенного интеграла 581
Глава 11
ОПРЕДЕЛЕННЫЙ ИНТЕГРАЛ 583
11.1. Определение определенного интеграла. Свойства. Формула Ньютона-Лейбница
11.2. Замена переменной в определенном интеграле 587
11.3. Интегрирование по частям 591
11.4. Теоремы об оценке определенного интеграла 594
11.5. Определенный интеграл как функция верхнего предела .597
11.6. Несобственные интегралы 599
Глава 12
ПРИЛОЖЕНИЕ ОПРЕДЕЛЕННОГО ИНТЕГРАЛА К ЗАДАЧАМ ГЕОМЕТРИИ, МЕХАНИКИ И ФИЗИКИ 611
12.1. Общая схема применения определенного интеграла к вычислению различных величин
12.2. Площадь плоской фигуры 614
12.3. Объем тела 626
12.4. Длина дуги кривой 638
12.5. Площадь поверхности вращения 645
12.6. Вычисление статических моментов и моментов инерции 651
12.7. Координаты центра тяжести 669
12.8. Приложение определенного интеграла к задачам механики и физики 682
ЛИТЕРАТУРА 704

Рейтинг: 4.8 баллов / 2537 оценок
Формат: Книга
Уже скачали: 12830 раз



Похожие Книги

Нам показалось, что Книги ниже Вас заинтересуют не меньше. Эти издания Вы так же можете скачивать и читать совершенно бесплатно на сайте!

  • Книга Check Your English Vocabulary for Business and Administration

    Check Your English Vocabulary for Business and Administration

    Книга: Check Your English Vocabulary for Business and Administration Автор: Rawdon Wyatt Издательство: A & C Black London Год издания: 2008 Страниц: 82 Формат: PDF Качество: Отличное Размер файла: 1 М . . .

  • Книга Парадигма дуализма. Пространство - время, информация - энергия

    Парадигма дуализма. Пространство - время, информация - энергия

    Название: Парадигма дуализма. Пространство - время, информация - энергия Автор: А.И.Демин Издательство: ЛКИ Страниц: 322 Формат: PDF Размер: 14,5 МБ Качество: Отличное Язык: Русский Год издания: 2007 . . .

  • Книга Рабочая тетрадь 2 к учеб. англ. языка Enjoy English 2

    Рабочая тетрадь 2 к учеб. англ. языка Enjoy English 2

    Книга: Рабочая тетрадь 2 к учеб. англ. языка Enjoy English 2 Автор: Биболетова М.З. и др. Страниц: 58 Формат: DJVU Размер: 1.96 Мб Качество: Нормальное Язык: Русский Жанр: английский язык Год издания: . . .

  • Книга Рассказы о множествах

    Рассказы о множествах

    Название: Рассказы о множествах Автор: Н.Я.Виленкин Издательство: МЦНМО Страниц: 152 Формат: PDF Размер: 5,7 МБ Качество: Отличное Язык: Русский Год издания: 2005 В 70-х годах XIX века немецкий матема . . .

  • Книга Сокрушая робость

    Сокрушая робость

    Название: Сокрушая робость Автор: Джон Бивер Издательство: Издательский центр "Золотые страницы" Формат: PDF Размер: 11,86 Мб Качество: Отличное Язык: Русский Год издания: 2009 Вам трудно говорить "не . . .

  • Книга Вся грамматика английского языка в таблицах

    Вся грамматика английского языка в таблицах

    Книга: Вся грамматика английского языка в таблицах Автор: Шалаева Г.П. Страниц: 65 Формат: PDF Размер: 1.15 Мб Качество: Отличное Язык: Русский Год издания: 2004 Основная задача этого пособия - помочь . . .

  • Книга На чем я остановился?

    На чем я остановился?

    Название: На чем я остановился? Автор: Грегор Штауб Издательство: АСТ; Астрель Страниц: 64 Формат: DJVU Размер: 0,3 мб Качество: Отличное Язык: Русский Год издания: 2005 Запоминание имен, абстрактных . . .

  • Книга Эфир и мироздание, или Конец релятивизму

    Эфир и мироздание, или Конец релятивизму

    Название: Эфир и мироздание, или Конец релятивизму Автор: Лузин Б.А. Издательство: Пермь Страниц: 445 Формат: PDF Размер: 23,1 МБ Качество: Отличное Язык: Русский Год издания: 2003 Научно-популярный о . . .

  • Книга Эволюционное учение (1-e издание)

    Эволюционное учение (1-e издание)

    Название: Эволюционное учение (1-e издание) Автор: А.В.Яблоков, А.Г.Юсуфов Издательство: Высшая школа Страниц: 337 Формат: PDF Размер: 18,2 МБ Качество: Отличное Язык: Русский Год издания: 1976 В книг . . .

  • Книга Домашняя работа по англ. языку за 7 кл. к учебнику М.З. Биболетовой и др. Enjoy English 7

    Домашняя работа по англ. языку за 7 кл. к учебнику М.З. Биболетовой и др. Enjoy English 7

    Книга: Домашняя работа по англ. языку за 7 кл. к учебнику М.З. Биболетовой и др. Enjoy English 7 Автор: В.В. Колесникова Страниц: 349 Формат: DJVU Размер: 8.33 Мб Качество: Нормальное Язык: Русский Жа . . .


Вы не зарегистрированы!

Если вы хотите скачивать книги, журналы и аудиокниги бесплатно, без рекламы и без смс, оставлять комментарии и отзывы, учавствовать в различных интересных мероприятиях, получать скидки в книжных магазинах и многое другое, то Вам необходимо зарегистрироваться в нашей Электронной Библиотеке.

Отзывы читателей


Ой!

К сожалению, в нашей Бесплатной Библиотеке пока нет отзывов о Книге Высшая математика в примерах и задачах - Том 1 - Черненко В.Д.. Помогите нам и другим читателям окунуться в сюжет Книги и узнать Ваше мнение. Оставьте свой отзыв или обзор сейчас, это займет у Вас всего-лишь несколько минут.