Высшая геометрия, Клейн Ф., 2004.
Книга выдающегося немецкого математика Ф.Клейна (1849--1925) создана на основе лекций по высшей геометрии, прочитанных им в Гёттингенском университете и подготовленных к печати его учениками и последователями. Автор разделяет геометрию на две отдельные части: геометрия в ограниченной части пространства, к которой относятся почти все применения дифференциальных и интегральных исчислений, и геометрия в полном пространстве, к которой относится теория алгебраических образов. Обе части подробно рассмотрены в книге, параграфы которой расположены таким образом, чтобы читатель, знакомясь с важнейшими понятиями геометрии, видел, как они развивались с течением времени и какие успехи вследствие этого делала данная область науки.
Предназначена для специалистов - математиков и физиков, использующих в своих исследованиях применения геометрии, а также для студентов и аспирантов.
Основное разделение геометрии.
В соответствии с изложенным мы можем также и геометрию расчленить на две отдельные части, именно:
1. Геометрия в ограниченном куске пространства, соответственно с применением только элементов функций.
2. Геометрия в полном пространстве, соответственно с применением полных функций.
К первой части относятся почти все применения дифференциального и интегрального исчислений к геометрии. Действительно, если мы производим построение касательных к кривой, если мы исследуем кривизну кривых или поверхностей, то при этом мы всегда принимаем во внимание только малый ограниченный кусок области, не заботясь о том, какие особенности может иметь наш образ вне рассматриваемой области. Сюда также относится в своей большей части разработанная Гауссом теория поверхностей.
С другой стороны, теория алгебраических кривых и поверхностей относится по преимуществу ко второй части, так как при большинстве исследований по поводу этих образов, например, при нахождении точек пересечения или линий пересечения нескольких таких образов мы всегда рассматриваем эти образы в целом.
Оглавление
Предисловие
Введение
§1. Общие предварительные замечания
§1,1. Основные теоретико-функциональные понятия
§1,2. Основное разделение геометрии
§1,3. Дальнейшие относящиеся сюда сведения
Первая часть
ОБЩЕЕ ПОНЯТИЕ КООРДИНАТ
Точечные координаты
§2. Линейные координаты
§3. Работы Плюкера
§4. Общие криволинейные координаты
§5. Эллиптические координаты
§6. Геодезические линии на поверхностях второй степени
§7. Построения из нитей Гревса и Штауде
§8. Теория кругов и шаров. Исторические замечания
§9. Элементарная геометрия круга
§10. Преобразования посредством обратных радиусов (инверсия)
§11. Пентасферические координаты
§12. Применения пентасферических координат
§13. Циклиды Дюпена
§14. Классификация рассмотренных до сих пор объектов аналитической геометрии
§15. Билинейные уравнения и двойственность
§16. Нуль-система
§17. Применения нуль-системы
§18. Геометрическое истолкование дифференциальных уравнений
Замена пространственных элементов
§19. Общий принцип Плюкера
§20. Прямолинейные координаты
§21. Линейные многообразия линейчатой геометрии
§22. Линейный комплекс, как пространственный элемент
§23. Привлечение вспомогательных средств из теории квадратичных форм
§24. Сравнение с пентасферическими координатами
§25. Геометрия сфер Ли
§26. Соотношение между асимптотическими линиями и линиями кривизны
§27. Исторические замечания о геометрии сфер
§28. Привлечение многомерного пространства Грассманом и Кели
§29. Круги в пространстве, пентацикл Стефаноса
§30. Коннексы Клебша
§31. Основные формулы для кривизны поверхности
§32. Введение плоскостных координат в дифференциальные уравнения
ТЕОРИЯ ПРЕОБРАЗОВАНИЙ.
Точечные преобразования пространства
§33. Линейные преобразования
§34. Перспектограф и пантограф
§35. Рельефная перспектива и перспектива изображения
§36. Ньютонова классификация кривых третьего порядка
§37. Понселе и учение о двойных отношениях
§38. Штейнер и Шаль
§39. Кели и Штаудт
§40. О теории инвариантов
§41. W-кривые Клейна и Ли
§42. Проективная дифференциальная геометрия
§43. Теория конфокальных конических сечений в мнимой области
§44. Мнимые коллинеации
§45. Стереографическая проекция
§46. Изотропные кривые и конформные отображения поверхностей
§47. Теория минимальных поверхностей Ли
§48. Новейшие рассмотрения стереографической проекции и тетрациклических координат
§49. Группа сродства кругов Мебиуса
§50. Теорема Лиувилля о конформных отображениях пространства
§51. Принцип перенесения Гесса
§52. Плоские конфигурации
§53. Взаимные планы сил графической статики
§54. Общие аналитические точечные преобразования
§55. Классификация выражений Пфаффа
§56. Проблема Пфаффа
§57. Введение квадратичных дифференциальных форм Гауссом
§58. Дифференциаторы Бельтрами
§59. Пространство Римана
§60. Дальнейшая литература о квадратичных дифференциальных формах
§61. Кремоновы преобразования
Замена пространственных элементов
§62. Двойственное преобразование, как преобразование прикосновения
§63. Первое введение общих преобразований прикосновения
§64. Обе группы преобразований геометрии сфер
§65. Изотропная проекция на Rn+1 на Rn
§66. Изотропная проекция R3 на R2
§67. Группа Лагерра и эквилонгальные отображения на плоскости
§68. Перенесение на высшие размерности
§69. Группа геометрии прямых линий Плюкера
§70. Связь между геометрией прямых линий Плюкера и геометрией сфер Ли
§71. Элементарно-геометрическое рассмотрение прямолинейно-сферического преобразования
§72. Теория характеристик дифференциальных уравнений с частными производными первого порядка
§73. Дифференциальные уравнения с частными производными геометрии линий и геометрии сфер
§74. Общая теория преобразований прикосновения
§75. Дальнейшие примеры преобразований прикосновения
§75,1. Подэры
§75,2. Зубчатые колеса
§75,3. Преобразования прикосновения, сохраняющие периметр
§75,4. Вариации постоянных
§76. Теория инвариантов преобразований прикосновения
Третья часть. ПРИМЕРЫ ГЕОМЕТРИЧЕСКИХ ИССЛЕДОВАНИЙ ИЗ ПОСЛЕДНИХ ДЕСЯТИЛЕТИЙ. ДОПОЛНЕНИЯ.
Геометрия линий Штуди
§77. Принцип перенесения Штуди
§78. Аналоги дуальным проективитетам на плоскости в геометрии линий
§79. Аналоги дуальному сродству окружностей в геометрии линий.
Литература
§80. Евклидово отображение эллиптической неевклидовой пространственной геометрии
§81. Кинематическое отображение
Радоновы механические соображения о параллелизме Леви-Чивита
§82. Уравнения движения
§83. Асимптотическая интеграция
§84. Параллельное перенесение
§85. Применение параллельного перенесения в теории поверхностей
§86. Выведение параллельного перенесения из внутренней геометрии поверхности
Из топологии: артиновы косы
§87. Доказательство Александера теоремы Титце
§88. Проблема узлов
§89. Группа кос
§90. Определяющие соотношения
§91. Замкнутая коса
§92. Свободное произведение групп
§93. Косы третьего порядка
О дифференциальных уравнениях Монжа. Их отношение к теории дифференциальных уравнений с частными производными первого порядка и к вариационному исчислению
§94. Уравнение Гамильтона
§95. Соответствующие преобразования прикосновения
Введение в теорию элементарных делителей
§96. Линейные подстановки и исчисление матриц
§97. Геометрическое истолкование линейных подстановок
§98. Нормальная форма линейных преобразований
§99. Пары квадратичных форм
Именной и предметный указатель.
Рейтинг: | 4.8 баллов / 2537 оценок |
Формат: | Книга |
Уже скачали: | 12804 раз |
Нам показалось, что Книги ниже Вас заинтересуют не меньше. Эти издания Вы так же можете скачивать и читать совершенно бесплатно на сайте!
Автор: Виктор ПобережныхНазвание: «Попаданец» в НКВД. Горячий июнь 1941-го (часть 2)Издательство: Au-BooksЖанр: Альтернативная историяСерия: Горячий июнь 1941-го - 2Год: 2013Исполнитель: RHVoice Alexa . . .
Название: А что у нас сегодня на обед?Автор: Вкусный А.Издательство: ЯузаГод: 2008Страниц: 287Язык: РусскийФормат: pdfРазмер: 5.2 МбА что у нас сегодня на обед? Завтрак, обед... ужин! Три этих слова с . . .
Автор: Терехов В. А.Название: Задачник по электронным приборам: Учеб. пособие для вузов. 2-е изд., перераб. и доп. Издательство: ЭнергоатомиздатГод: 1983Страниц: 280Формат: DJVUРазмер: 6,3 МБКачест . . .
Название: Перехитрим малыша Автор: Билл АдлерИсполнитель: RHVoice AlexandrИздательство: СамиздатЖанр: научно-популярная литератураГод выпуска: 2013Формат|Качество: MP3, 128 Кбит/сПродолжительность: 10 . . .
Название: Vocabulary for IELTS Advanced with answers: Self-study vocabulary practiceАвтор: Pauline CullenИздательство: Cambridge University PressГод издания: 2012Страниц: 176ISBN: 978-0-521-17922-5Язы . . .
Автор: Анатолий ДроздовНазвание: Интендант третьего рангаИздательство: Au-BooksЖанр: Альтернативная историяГод: 2013Исполнитель: RHVoice AlexandrЯзык: русскийФормат: MP3Битрейт аудио: 48 Kb/sВремя зву . . .
Название: Robinson Crusoe / Робинзон КрузоГод выпуска: 2008Автор: Daniel Defoe / Даниель ДефоИсполнитель: Simon VanceИздательство: Tantor MediaЯзык: EnglishАудио кодек: MP3Битрейт аудио: 128 kbpsРазме . . .
Название: Предсказание прошлого. Расцвет и гибель допотопной цивилизации Автор: Александр НиконовИсполнитель: RHVoice AlexandrИздательство: СамиздатЖанр: научно-популярная литератураГод выпуска: 2013Ф . . .
Название: ZlataГод / месяц: 2010/01Номер: 08Формат: JPGСтраниц: 68Размер: 18,67 МбЭлектронный журнал о моделях с потрясающей гибкостью. Каждый номер посвящён одному художественному образу. Не содержит . . .
Название: AD Architectural DigestГод / месяц: Septembre / Octobre 2013Номер: 119Формат: PDFРазмер: 124 MbСтраниц: 288Язык: frenchAD Architectural Digest - главный международный журнал по архитектуре . . .
Если вы хотите скачивать книги, журналы и аудиокниги бесплатно, без рекламы и без смс, оставлять комментарии и отзывы, учавствовать в различных интересных мероприятиях, получать скидки в книжных магазинах и многое другое, то Вам необходимо зарегистрироваться в нашей Электронной Библиотеке.
К сожалению, в нашей Бесплатной Библиотеке пока нет отзывов о Книге Высшая геометрия, Клейн Ф., 2004. Помогите нам и другим читателям окунуться в сюжет Книги и узнать Ваше мнение. Оставьте свой отзыв или обзор сейчас, это займет у Вас всего-лишь несколько минут.