Вычислительная математика в примерах и задачах, Копченова Н.В., Марон И.А., 2009.
Учебное пособие представляет собой руководство к решению задач по вычислительной математике.
В книге содержатся сведения о правилах приближенных вычислений, вычислении значений функций, приближенном решении систем линейных и нелинейных уравнений, интерполировании, приближенном дифференцировании и интегрировании, приближенном решении дифференциальных уравнений (обыкновенных и с частными производными), приближенном решении интегральных уравнений.
Все параграфы содержат краткие теоретические сведения, подробное решение типовых примеров и задачи для самостоятельного решения. Для большинства таких задач приведены ответы.
Учебное пособие предназначено для студентов технических и экономических университетов и ВУЗов. Может быть полезным также научным работникам в области технических и экономических наук.
ВЫЧИСЛЕНИЕ ЗНАЧЕНИЙ ФУНКЦИИ.
При вычислении с помощью счетных машин значений функций, заданных формулами, далеко не безразлично, в каком виде записана соответствующая формула. Математически эквивалентные выражения часто оказываются неравноценными с точки зрения практики вычислений. Дело в том, что основными операциями большинства вычислительных машин являются сложение, вычитание, умножение и деление. Поэтому возникает необходимость представить рассматриваемую математическую задачу в виде последовательности этих элементарных операций. Учитывая ограниченность объема памяти машины и необходимость экономии машинного времени, желательно эти операции разбить на повторяющиеся циклы и выбрать соответствующий алгоритм. Ниже мы рассмотрим приемы, сводящие вычисление некоторых функций к таким циклам из элементарных операций.
ОГЛАВЛЕНИЕ
Предисловие
ГЛАВА I ПРАВИЛА ПРИБЛИЖЕННЫХ ВЫЧИСЛЕНИЙ И ОЦЕНКА ПОГРЕШНОСТЕЙ ПРИ ВЫЧИСЛЕНИЯХ
§ 1. Приближенные числа, их абсолютные и относительные погрешности
§ 2. Сложение и вычитание приближенных чисел
§ 3. Умножение и деление приближенных чисел
§ 4. Погрешности вычисления значений функции
§ 5. Определение допустимой погрешности аргументов по допустимой погрешности функции
ГЛАВА II ВЫЧИСЛЕНИЕ ЗНАЧЕНИЙ ФУНКЦИИ
§ 1. Вычисление значений многочлена. Схема Горнера
§ 2. Вычисление значений некоторых трансцендентных функций с помощью степенных рядов
§ 3. Некоторые многочленные приближения
§ 4. Применение цепных дробей для вычисления значений трансцендентных функций
§ 5. Применение метода итераций для приближенного вычисления значений функций
ГЛАВА III ЧИСЛЕННОЕ РЕШЕНИЕ СИСТЕМ ЛИНЕЙНЫХ АЛГЕБРАИЧЕСКИХ УРАВНЕНИЙ
§ 1. Основные понятия
§ 2. Метод Гаусса
§ 3. Компактная схема Гаусса. Модификация Краута—Дулитла
§ 4. Схема Гаусса с выбором главного элемента
§ 5. Схема Халецкого
§ 6. Метод квадратных корней
§ 7. Вычисление определителей
§ 8. Вычисление элементов обратной матрицы методом Гаусса
§ 9. Метод простой итерации
§ 10. Метод Зейделя
§ 11. Применение метода итераций для уточнения элементов обратной матрицы
ГЛАВА IV ЧИСЛЕННОЕ РЕШЕНИЕ СИСТЕМ НЕЛИНЕЙНЫХ УРАВНЕНИЙ
§ 1. Метод Ньютона для системы двух уравнений
§ 2. Метод простой итерации для системы двух уравнений
§ 3. Распространение метода Ньютона на системы п уравнений с п неизвестными
§ 4. Распространение метода итераций на системы п уравнений с п неизвестными
ГЛАВА V ИНТЕРПОЛИРОВАНИЕ ФУНКЦИЙ
§ 1. Постановка задачи интерполирования
§ 2. Интерполирование для случая равноотстоящих узлов. Первая и вторая интерполяционные формулы Ньютона
§ 3. Интерполяционные формулы Гаусса, Стирлинга, Бесселя
§ 4. Интерполяционная формула Лагранжа. Схема Эйткена
§ 5. Обратное интерполирование
§ 6. Нахождение корней уравнения методом обратного интерполирования
ГЛАВА VI ЧИСЛЕННОЕ ДИФФЕРЕНЦИРОВАНИЕ
§ 1. Формулы численного дифференцирования
§ 2. Погрешности, возникающие при численном дифференцировании
§ 3. Выбор оптимального шага численного дифференцирования
ГЛАВА VII ПРИБЛИЖЕННОЕ ВЫЧИСЛЕНИЕ ИНТЕГРАЛОВ
§ 1. Квадратурные формулы с равноотстоящими узлами
§ 2. Выбор шага интегрирования
§ 3. Квадратурные формулы Гаусса
§ 4. Интегрирование с помощью степенных рядов
§ 5. Интегралы от разрывных функций. Метод Канторовича выделения особенностей
§ 6. Интегралы с бесконечными пределами
§ 7. Кратные интегралы. Метод повторного интегрирования, метод Люстерника и Диткина, метод Монте-Карло
ГЛАВА VIII ПРИБЛИЖЕННОЕ РЕШЕНИЕ ОБЫКНОВЕННЫХ ДИФФЕРЕНЦИАЛЬНЫХ УРАВНЕНИЙ
§ 1. Задача Коши. Общие замечания
§ 2. Интегрирование дифференциальных уравнений с помощью рядов
§ 3. Метод последовательных приближений
§ 4. Метод Эйлера
§ 5. Модификации метода Эйлера
§ 6. Метод Эйлера с последующей итерационной обработкой
§ 7. Метод Рунге — Кутта
§ 8. Метод Адамса
§ 9. Метод Милна
§ 10. Метод Крылова отыскания «начального отрезка»
ГЛАВА IX КРАЕВЫЕ ЗАДАЧИ ДЛЯ ОБЫКНОВЕННЫХ ДИФФЕРЕНЦИАЛЬНЫХ УРАВНЕНИЙ
§ 1. Постановка задачи
§ 2. Метод конечных разностей для линейных дифференциальных уравнений второго порядка
§ 3. Метод прогонки
§ 4. Метод конечных разностей для нелинейных дифференциальных уравнений второго порядка
§ 5. Метод Галеркина
§ 6. Метод кол локации
ГЛАВА X ЧИСЛЕННОЕ РЕШЕНИЕ УРАВНЕНИЙ С ЧАСТНЫМИ ПРОИЗВОДНЫМИ И ИНТЕГРАЛЬНЫХ УРАВНЕНИЙ
§ 1. Метод сеток
§ 2. Метод сеток для задачи Дирихле
§ 3. Итерационный метод решения системы конечно-разностных уравнений
§ 4. Решение краевых задач для криволинейных областей
§ 5. Метод сеток для уравнения параболического типа
§ 6. Метод прогонки для уравнения теплопроводности
§ 7. Метод сеток для уравнения гиперболического типа
§ 8. Решение уравнений Фредгольма методом конечных сумм
§ 9. Решение уравнения Вольтерра второго рода методом конечных сумм
§ 10. Метод замены ядра на вырожденное
Приложения
Ответы
Литература
Распределение литературы по главам.
Рейтинг: | 4.8 баллов / 2537 оценок |
Формат: | Книга |
Уже скачали: | 12801 раз |
Нам показалось, что Книги ниже Вас заинтересуют не меньше. Эти издания Вы так же можете скачивать и читать совершенно бесплатно на сайте!
Название: Григорий Распутин. Сборник исторических материалов в 4-х томах. Том 2 Автор: Крюков В.(сост.) Издательство: Терра, Книжная лавка - РТР Страниц: 480 Формат: PDF Размер: 50.4 Мб Качество: Норм . . .
Название: Григорий Распутин. Сборник исторических материалов в 4-х томах. Том 1 Автор: Крюков В.(сост.) Издательство: Терра, Книжная лавка - РТР Страниц: 544 Формат: PDF Размер: 58.4 Мб Качество: Норм . . .
Название: Любовь и маска Автор: Дмитрий Щеглов Издательство: Русич, Олимп Формат: RTF Размер: 15 Мб Качество: Отличное Язык: Русский Год издания: 1997 Одна из первых `звезд` советского киноэк . . .
Название: За гранью временАвтор: Говард ЛавкрафтРаздел: Ужасы и мистикаСерия: Классика Издательство: АзбукаISBN: 5352007278Год издания: 2004Формат: rtf,txt,pdf,htmlРазмер: 3,05MbКлассические рассказы . . .
Название: Полная энциклопедия русского сельского хозяйства и соприкасающихся с ним наук. В 12 томах. Том 5 Автор: Коллектив авторов Издательство: СПб.: Издание А.Ф. Девриена Страниц: 1280 Формат: DJVU . . .
Название: Частная жизнь знаменитостей Автор: Белоусов Роман Издательство: АСТ, Олимп Формат: RTF Размер: 13,58 мб Качество: Отличное Язык: Русский Год издания: 1999 Герои этой книги - императоры и ко . . .
Название: Полная энциклопедия русского сельского хозяйства и соприкасающихся с ним наук. В 12 томах. Том 4 Автор: Коллектив авторов Издательство: СПб.: Издание А.Ф. Девриена Страниц: 1282 Формат: DJVU . . .
Название: Охотники на шпионов. Контрразведка Российской империи 1903—1914 Автор: Борис Старков Издательство: Питер Страниц: 304 Формат: RTF Размер: 7 Мб Качество: Отличное Язык: Русский Год изда . . .
С чувством юмора легче шагать по жизни - это факт. Жаль, что оно не передается с генами или по наследству. Но не стоит отчаиваться - чувство юмора можно воспитать и развивать. И чем раньше начать это . . .
Название: Интимная жизнь английских королей и королев Автор: Которн Найджел Издательство: АСТ Формат: RTF Размер: 11,1 мб Качество: Отличное Язык: Русский Год издания: 1999 Интимная жизнь английских к . . .
Если вы хотите скачивать книги, журналы и аудиокниги бесплатно, без рекламы и без смс, оставлять комментарии и отзывы, учавствовать в различных интересных мероприятиях, получать скидки в книжных магазинах и многое другое, то Вам необходимо зарегистрироваться в нашей Электронной Библиотеке.
К сожалению, в нашей Бесплатной Библиотеке пока нет отзывов о Книге Вычислительная математика в примерах и задачах, Копченова Н.В., Марон И.А., 2009. Помогите нам и другим читателям окунуться в сюжет Книги и узнать Ваше мнение. Оставьте свой отзыв или обзор сейчас, это займет у Вас всего-лишь несколько минут.