Уравнения в частных производных дробного порядка, Псху А.В., 2005


Книга Уравнения в частных производных дробного порядка, Псху А.В., 2005

Уравнения в частных производных дробного порядка, Псху А.В., 2005.
   Монография посвящена основополагающим элементам теории краевых задач для дифференциальных уравнений с частными производными дробного и континуального порядков.
Впервые в отечественной литературе проведен анализ корректных постановок и рассмотрены методы решения и исследования основных краевых задач для широкого класса таких уравнений. Изучены задачи для уравнений порядка меньше либо равного единице, диффузионно-волновых уравнений, эволюционных уравнений. Развиты метод факторизации, метод функции Грина, методы интегральных преобразований; изучены свойства возникающей при решении этих задач и имеющей очень важное значение функции типа Райта; найдены условия единственности решения задач Коши типа условий Тихонова; изучены свойства оператора интегро-дифференцирования континуального порядка, доказаны аналоги формулы Ньютона-Лейбница.
Монография будет полезна для научных работников, аспирантов, студентов и преподавателей ВУЗов.

ДИФФУЗИОННО-ВОЛНОВОЕ УРАВНЕНИЕ.
Пусть область D целиком лежит в верхней полуплоскости и обладает тем свойством, что вместе с точкой (х,у) € D она содержит интервал с концами в точках (х,у) и (х, 0). В области D рассмотрим уравнение
Lu(х,у) = uхх(х,у) - D0yu(x,y) =f(x,y).    (4.1.1)
Уравнение (4.1.1) будем называть уравнением диффузии дробного порядка в случае, когда 0 < а < 1, и волновым уравнением дробного порядка, когда 1 < а < 2, или, в общем случае, диффузионно-волновым уравнением. При а = 1 это уравнение совпадает с уравнением диффузии uхх(х,у) - uу(х,у) = f(x,y) и при а = 2 с волновым уравнением uхх(х, у) - uуу(х, у) = f(x, у).
Сначала методом редукции к системе уравнений меньшего порядка мы решим задачу Коши и первую краевую задачу для дробного уравнения диффузии. Затем методом функции Грина будут построены решения основных краевых задач в прямоугольной области и с помощью фундаментального решения будет решена задача Коши для диффузионно-волнового уравнения.
Оглавление
Предисловие
1. Вводные сведения
1.1. Специальные функции
1.2. Операторы дробного интегро-дифференцирования
1.3. Интегральные и дифференциальные уравнения дробного порядка
2. Уравнения порядка, не превосходящего единицу
2.1. Уравнение с производными Римана-Лиувилля
2.1.1. Регулярное решение
2.1.2. Представление решения
2.1.3. Функция типа Райта
2.2. Свойства функции типа Райта
2.2.1. Представление в виде ряда и формулы трансформации
2.2.2. Предельные соотношения
2.2.3. Дробное интегрирование и дифференцирование
2.2.4. Оценки
2.2.5. Свертка функций Райта
2.2.6. Свойства интегралов с функцией типа Райта
2.2.7. Неравенства для функции Райта
2.3. Задача в прямоугольной области
2.3.1. Специальное решение
2.3.2. Постановка задачи
2.3.3. Формулировка теоремы
2.4. Задача для уравнения с отрицательным коэффициентом
2.5. Задача Коши
2.5.1. Постановка задачи и представление решения
2.5.2. Теорема единственности решения. Аналог условия Тихонова
2.5.3. Случай отрицательного коэффициента
2.5.4. Неулучшаемость показателя степени в условиях единственности решения
2.6. Уравнение с производными Капуто
2.6.1. Задача в прямоугольной области
2.6.2. Задача Коши
Библиографические комментарии
3. Интегральное преобразование с функцией Райта в ядре
3.1. Определение
3.2. Свойства преобразований
3.2.1. Общие свойства
3.2.2. Преобразования степенных функций
3.2.3. Свертка преобразований
3.2.4. Связь с преобразованиями Лапласа и Меллина
3.2.5. Композиция преобразований
3.2.6. Связь с операторами дробного интегро-дифференцирования
3.2.7. Предельные соотношения
3.2.8. Сравнение преобразований
3.2.9. Преобразования некоторых функций
3.3. Применение к изучению функции типа Райта
3.3.1. Формула перестановки параметров
3.3.2. Неравенства
3.3.3. Представление в форме интеграла по положительной полуоси
3.4. Применение к решению дифференциальных уравнений дробного порядка
3.4.1. Эволюционные уравнения
3.4.2. Общее уравнение диффузии дробного порядка
3.4.3. Уравнение со свободным членом
3.5. О вещественных нулях функции типа Миттаг-Леффлера
3.5.1. Обозначения
3.5.2. Основная теорема
3.5.3. Следствия
3.5.4. Геометрическое описание
Библиографические комментарии
4. Диффузионно-волновое уравнение
4.1. Введение
4.2. Метод редукции к системе уравнений меньшего порядка
4.2.1. Задача Коши
4.2.2. Первая краевая задача
4.3. Метод функции Грина
4.3.1. Общее представление решения
4.3.2. Функция Грина первой краевой задачи
4.3.3. Вторая краевая задача
4.3.4. Смешанные задачи
4.4. Задача Коши
4.4.1. Постановка задачи
4.4.2. Фундаментальное решение
4.4.3. Решение задачи Коши
4.4.4. Единственность решения. Аналог условия Тихонова
Библиографические комментарии
5. Уравнения континуального порядка
5.1. Оператор интегро-дифференцирования континуального порядка
5.1.1. Обозначения и определения
5.1.2. Аналог формулы Ньютона-Лейбница для оператора интегрирования
5.1.3. Непрерывное уравнение Абеля
5.1.4. Аналог формулы Ньютона-Лейбница для дифференциального оператора
5.1.5. Задача Коши
5.1.6. Принцип экстремума
5.2. Задача Коши для обыкновенного уравнения континуального порядка
5.2.1. Постановка задачи
5.2.2. Представление решения
5.2.3. Фундаментальное решение
5.2.4. Решение задачи Коши
5.2.5. Положительность фундаментального решения и характер зависимости от спектрального параметра
5.3. Уравнение диффузии континуального порядка. Фундаментальное решение
5.3.1. Определение фундаментального решения
5.3.2. Асимптотика фундаментального решения
5.3.3. Представление фундаментального решения в форме контурного интеграла
5.3.4. Оценка контурного интеграла
5.3.5. Доказательство леммы 5.3.2
5.3.6. Неравенство для фундаментального решения
5.4. Общее представление решения уравнения диффузии континуального порядка
5.5. Краевые задачи для континуального уравнения диффузии
5.5.1. Первая краевая задача
5.5.2. Вторая краевая задача
5.5.3. Смешанные краевые задачи
5.6. Задача Коши уравнения диффузии континуального порядка
Библиографические комментарии
Список литературы
Именной указатель
Предметный указатель.

Рейтинг: 4.8 баллов / 2537 оценок
Формат: Книга
Уже скачали: 12851 раз



Похожие Книги

Нам показалось, что Книги ниже Вас заинтересуют не меньше. Эти издания Вы так же можете скачивать и читать совершенно бесплатно на сайте!

  • Книга Программируемые роботы. Создаем робота для своей домашней мастерской

    Программируемые роботы. Создаем робота для своей домашней мастерской

    В книге Джеффа Вильямса подробно рассматриваются элементы схем, используемые в устройствах числового программного управления: интегральные микросхемы, контроллеры шаговых двигателей и сами двигатели, . . .

  • Книга Солнечный ключ жизни или семейные психотренинги для родителей и детей

    Солнечный ключ жизни или семейные психотренинги для родителей и детей

    Название: Солнечный ключ жизни или семейные психотренинги для родителей и детейАвтор: Райченко Л.В., Райченко С.Н. Издательство: Донецк: «Институт Культуры ДонНТУ» ISBN: 978-966-492-195-1Год: 2011Стр . . .

  • Книга Microsoft Office Excel 2007 для "чайников". Краткий справочник

    Microsoft Office Excel 2007 для "чайников". Краткий справочник

    Название: Microsoft Office Excel 2007 для "чайников". Краткий справочникАвтор: Уокенбах Джон, Банфилд КолинИздательство: ООО "И.Д. Вильямc"Год: 2007Страниц: 384Формат: djvuРазмер: 5,71 МбISBN: 978-5-8 . . .

  • Книга Измерительная лаборатория начинающего радиолюбителя

    Измерительная лаборатория начинающего радиолюбителя

    В брошюре описываются схемы и конструкции самодельной измерительной аппаратуры, предназначенной для налаживания и испытаний радиолюбительских конструкций.В ней приводятся описания авометра, транзистор . . .

  • Книга Любительские усилители низкой частоты

    Любительские усилители низкой частоты

    В книге описываются конструкции любительских усилителей низкой частоты и даются рекомендации по их изготовлению и налаживанию.Книга рассчитана на радиолюбителей-конструкторов.Название: Любительские ус . . .

  • Книга Жемчужины программирования

    Жемчужины программирования

    Эта книга написана для программистов. Хороший программист должен знать все, что написано до него, только тогда он будет писать хорошие программы. Главы этой книги посвящены наиболее привлекательному а . . .

  • Книга Автоматические устройства контроля и управления

    Автоматические устройства контроля и управления

    В книге излагаются методы расчета и конструирования простейших автоматических устройств непрерывного и Дискретного действия. Описываются конструкции и электрические схемы включения датчиков. Приводятс . . .

  • Книга Микроконтроллеры MSP430. Первое знакомство

    Микроконтроллеры MSP430. Первое знакомство

    Книга посвящена микроконтроллерам серии MSP430, которые производятся фирмой Texas Instruments. Едва ли удастся найти конкурента этим микроконтроллерам по величине потребляемого тока и производительнос . . .

  • Книга Хрестоматия радиолюбителя

    Хрестоматия радиолюбителя

    Хрестоматия содержит выборки из журнальных статей, книг и брошюр по электротехнике и радиотехнике, в которых излагаются сведения, необходимые для начинающих радиолюбителей.Книга представляет собой пос . . .

  • Книга Боди-балет. 15 минут в день

    Боди-балет. 15 минут в день

    Название: Боди-балет. 15 минут в деньАвтор: Синтия ВейдерИздательство: Феникс Год: 2006Страниц: 64Формат: pdfРазмер: 5,4 mbISBN 5-222-08609-7Балетная хореография давно уже с успехом используется во мн . . .


Вы не зарегистрированы!

Если вы хотите скачивать книги, журналы и аудиокниги бесплатно, без рекламы и без смс, оставлять комментарии и отзывы, учавствовать в различных интересных мероприятиях, получать скидки в книжных магазинах и многое другое, то Вам необходимо зарегистрироваться в нашей Электронной Библиотеке.

Отзывы читателей


Ой!

К сожалению, в нашей Бесплатной Библиотеке пока нет отзывов о Книге Уравнения в частных производных дробного порядка, Псху А.В., 2005. Помогите нам и другим читателям окунуться в сюжет Книги и узнать Ваше мнение. Оставьте свой отзыв или обзор сейчас, это займет у Вас всего-лишь несколько минут.