Топология, Зейферт Г., Трельфалль В., 2001.
Книга представляет собой классическую монографию по топологии, принадлежащую перу известных немецких математиков. В ней с большим мастерством разобрана теория гомологии, — ее суждение является лучшей в мировой литературе. Разобраны также более специальные вопросы топологии.
Хотя за прошедшие годы многие разделы несколько устарели, книга не утратила своего значения и остается наиболее наглядным и ясным изложением основных идей топологии.
Для математиков, механиков, физиков, студентов и аспирантов университетов, специалистов.
Основная задача топологии.
Топология изучает свойства геометрических фигур, не меняющиеся при взаимно однозначных и взаимно непрерывных отображениях. (Такие отображения называются топологическими.) Под геометрической фигурой мы понимаем пока множество точек трехмерного пространства (или пространства более высокого числа измерений); отображение фигуры является непрерывным, если оно осуществляется в какой-нибудь декартовой системе координат этого пространства при помощи непрерывных функций. Эти функции не должны быть определены во всех точках пространства, а могут быть заданы лишь в точках отображаемой фигуры. Свойства, не меняющиеся при топологических отображениях, называются топологическими свойствами фигуры.
Две фигуры, допускающие топологическое отображение одной на другую, называются гомеоморфными. Например, полусфера и круг гомеоморфны, так как при помощи ортогонального проектирования полусфера топологически отображается на круг (на рис. 1 круг этот заштрихован). Вообще поверхности, которые могут быть деформированы одна в другую посредством изгибания, растяжения и сжатия, как например, поверхности шара, куба и эллипсоида, или плоское кольцо и боковая поверхность цилиндра, гомеоморфны. Нетрудно привести сколько угодно примеров гомеоморфных фигур, в том числе и таких, в которых гомеоморфность не видна сразу. Так, гомеоморфны евклидова плоскость и сфера с одной выкинутой точкой («проколотая» сфера), — одну можно топологически отобразить на другую при помощи стереографической проекции. Каждая из этих фигур сверх того гомеоморфна внутренности круга (§6, 2-й и 3-й примеры).
Оглавление
Предисловие ко второму русскому изданию
Предисловие к русскому переводу
Предисловие авторов
Глава I. Наглядный материал
§1. Основная задача топологии
§2. Замкнутые поверхности
§3. Изотопия, гомотопия, гомология
§4. Многообразия высших размерностей
Глава II. Симплициальный комплекс
§5. Окрестностные пространства
§6. Отображения
§7. Подмножества евклидовых пространств
§8. Отождествление
§9. n-мерный симплекс
§10. Полиэдры и их симплициальные подразделения (симплициальные комплексы)
§11. Схема симплициального комплекса
§12. Конечные и однородные комплексы. Многообразия
§13. Барицентрическое подразделение
§14. Примеры полиэдров и комплексов
Глава III. Группы Бетти
§15. Алгебраические комплексы
§16. Граница, цикл
§17. Гомологичные алгебраические комплексы
§18. Группы Бетти
§19. Вычисление групп Бетти в простейших случаях
§20. Слабые гомологии
§21. Вычисление групп Бетти при помощи матриц инциденций
§22. Кусочные алгебраические комплексы
§23. Алгебраические комплексы и числа Бетти по модулю 2
§24. Псевдомногообразия и ориентируемость
Глава IV. Сим инициальное приближение
§25. Особый симплекс
§26. Особые алгебраические комплексы
§27. Особые группы Бетти
§28. Теорема о симплициальном приближении. Инвариантность симплициальных групп Бетти
§29. Призмы в евклидовом пространстве
§30. Доказательство теоремы о симплициальном приближении
§31. Деформации и симплициальные приближения отображений
Глава V. Локальные свойства
§32. Локальные группы Бетти полиэдра
§33. Инвариантность размерности
§34. Инвариантность однородности комплекса
§35. Инвариантность границы
§36. Инвариантность псевдомногообразия и ориентируемости
Глава VI. Топология поверхностей
§37. Замкнутые поверхности
§38. Приведение к канонической форме
§39. Основная теорема топологии поверхностей
§40. Ограниченные поверхности
§41. Группы Бетти поверхностей
Глава VII. Фундаментальная группа
§42. Фундаментальная группа
§43. Примеры
§44. Группа симплициальных путей симплициального комплекса
§45. Группа симплициальных путей поверхностного комплекса
§46. Образующие и соотношения
§47. Линейчатые комплексы и замкнутые поверхности
§48. Фундаментальная группа и одномерная группа Бетти
§49. Свободные деформации замкнутых путей
§50. Фундаментальная группа и деформация отображения
§51. Фундаментальная группа в точке
§52. Фундаментальная группа составного полиэдра
Глава VIII. Накрывающий полиэдр
§53. Неразветвленный накрывающий полиэдр
§54. Основной и накрывающий пути
§55. Накрывающий полиэдр и подгруппа фундаментальной группы
§56. Универсальный накрывающий полиэдр
§57. Регулярное накрытие
§58. Группа монодромии
Глава IX. Трехмерные многообразия
§59. Общие свойства
§60. Представление трехмерных многообразий посредством многогранников
§61. Группы Бетти
§62. Фундаментальная группа
§63. Диаграмма Хегора (Heegaard)
§64. Ограниченные трехмерные многообразия
§65. Построение трехмерных многообразий при помощи узлов
Глава X. n-мерные многообразия
§66. Звездный комплекс
§67. Клеточный комплекс
§68. h-многообразия
§69. Закон двойственности Пуанкаре
§70. Индексы пересечения клеточных алгебраических комплексов
§71. Дуальные базы
§72. Клеточная аппроксимация
§73. Индексы пересечения особых алгебраических комплексов
§74. Инвариантность индекса пересечения
§75. Примеры
§76. Ориентируемость и двусторонность
§77. Коэффициенты зацепления
Глава XI. Непрерывные отображения
§78. Степень отображения
§79. Формула следа
§80. Формула неподвижных точек
§81. Приложения
Глава XII. Вспомогательные сведения из теории групп
§82. Образующие и соотношения
§83. Гомоморфное отображение и дополнительная группа
§84. Коммутирование групп
§85. Свободное и прямое произведения
§86. Абелевы группы
§87. Нормальная форма целочисленных матриц
Примечания
Указатель литературы
Предметный указатель.
Рейтинг: | 4.8 баллов / 2537 оценок |
Формат: | Книга |
Уже скачали: | 12818 раз |
Нам показалось, что Книги ниже Вас заинтересуют не меньше. Эти издания Вы так же можете скачивать и читать совершенно бесплатно на сайте!
Название: Робин Гуд: Путь к престолу Автор: Борис Орлов, Ольга Дорофеева Издательство: Самиздат Год издания: 2012 Страниц: 340 Язык: Русский Формат: rtf, fb2 / rar Качество: отличное Размер: 10,15 М . . .
Автор: Вейн А.М. Название: Лекции по неврологии неспецифических систем мозгаИздательство: МЕДnpecc-информГод: 2010Страниц: 112 с.Формат: djvu / rar + 3%Размер: 1.55 MBКнига видного московского невр . . .
Название: Детская энциклопедия для среднего и старшего возраста. В 12-ти томах. т.2 Мир небесных тел.Числа и фигурыАвтор книги: Маркушевич А.И. (гл.ред.)Издательство: М.: ПедагогикаГод выпуска: 1972Фо . . .
Название: Как не потерять работу Автор: Галина Романова Издательство: Альфа-книга ISBN: 978-5-9922-1329-4 Год издания: 2012 Страниц: 407 Язык: Русский Формат: rtf, fb2 / rar Качество: отличное Разме . . .
Сборник нот, аккордов, который перед вами, можно было бы назвать хрестоматией бытовой лирики 30—40-х годов. Он несомненно напомнит о любимых певицах и певцах той поры. Стоит зазвучать танго «Счастье м . . .
Название: Рассказы о красных командирахАвтор: Кононов А.Т., Дмитриев Ю.Д., Алексеев С.П.Издательство: Верхне-Волжское книжное издательствоГод издания: 1988Язык: русскийCтраниц: 67Формат: PDFРазмер: 28 . . .
Начало было многообещающим: ты один, в чужом городе, и в твою дверь стучится прекрасная незнакомка, умоляя о помощи. Только вот просит она другого человека — того, чьим именем тебе пришлось назваться . . .
Название: Опасные удовольствия в 11 книгахГод выпуска: 2011-2012Издательство: ЦентрполиграфСерия: Опасные удовольствияАвтор: РазныеЯзык: РусскийСтраниц: 4000Качество: ХорошееФормат: FB2Размер: 11,27 M . . .
Название: Омар ХайямАвтор: Алиев Р.М., Османов М.Н.Издательство: Академии наук СССРСерия: Научно-популярная серияГод издания: 1959Язык: русскийCтраниц: 145Формат: PDFРазмер: 11 МБОписание: Эта книга п . . .
Начало было многообещающим: ты один, в чужом городе, и в твою дверь стучится прекрасная незнакомка, умоляя о помощи. Только вот просит она другого человека — того, чьим именем тебе пришлось назваться. . . .
Если вы хотите скачивать книги, журналы и аудиокниги бесплатно, без рекламы и без смс, оставлять комментарии и отзывы, учавствовать в различных интересных мероприятиях, получать скидки в книжных магазинах и многое другое, то Вам необходимо зарегистрироваться в нашей Электронной Библиотеке.
К сожалению, в нашей Бесплатной Библиотеке пока нет отзывов о Книге Топология, Зейферт Г., Трельфалль В., 2001. Помогите нам и другим читателям окунуться в сюжет Книги и узнать Ваше мнение. Оставьте свой отзыв или обзор сейчас, это займет у Вас всего-лишь несколько минут.