Теория вероятностей и математическая статистика - Андронов А.М., Копытов Е.А., Гринглаз Л.Я.


Книга Теория вероятностей и математическая статистика - Андронов А.М., Копытов Е.А., Гринглаз Л.Я.

Название: Теория вероятностей и математическая статистик. 2004.
Автор: Андронов А.М., Копытов Е.А., Гринглаз Л.Я.
    Перед вами - расширенный учебник по теории вероятностей и математической статистике. Традиционный материал пополнен такими вопросами, как вероятности комбинаций случайных событий, случайные блуждания, линейные преобразования случайных векторов, численное нахождение нестационарных вероятностей состояний дискретных марковских процессов, применение методов оптимизации для решения задач математической статистики, регрессионные модели. Главное отличие предлагаемой книги от известных учебников и монографий по теории вероятностей и математической статистике заключается в ее ориентации на постоянное использование персонального компьютера при изучении материала. Изложение сопровождается многочисленными примерами решения рассматриваемых задач в среде пакетов Mathcad и STATISTICA. Книга написана на основе более чем тридцатилетнего опыта авторов в преподавании дисциплин теории вероятностей, математической статистики и теории случайных процессов для студентов различных специальностей высших учебных заведений.
Представляет практический интерес как для студентов и преподавателей ВУЗов, так и для всех, кто интересуется применением современных вероятностно-статистических методов.
   Теория вероятностей, как и любая другая математическая дисциплина, начинает с неопределяемых понятий. В теории вероятностей это понятия испытания (употребимыми синонимами также являются опыт, эксперимент, наблюдение и др.) и элементарного события (элементарный исход).
Под испытанием понимается реализация определенного комплекса условий, в результате которой наступает ровно одно элементарное событие из общей их совокупности, называемой пространством элементарных событий.
И зависимости от числа элементарных событий в пространстве, мы будем различать конечное, счетное и несчетное пространство элементарных событий. Конечное пространство содержит конечное число элементарных событий, счетное — бесконечное число, однако такое, которое можно перенумеровать (говорят также — пересчитать). Наконец, несчетное пространство содержит бесконечное число элементарных событий, не поддающихся нумерации (пересчету).
Краткое содержание
Введение 8
1. Пространство элементарных событий 11
2. Классическое определение вероятностей и повторные испытания 51
3. Дискретные случайные величины 74
4. Непрерывные случайные величины 92
5. Многомерные дискретные случайные величины 129
6. Многомерные непрерывные случайные величины 151
7. Суммирование случайных величин и предельные теоремы 182
8. Цепи Маркова 209
9. Дискретные марковские процессы 245
10. Задачи математической статистики и первичная обработка данных 278
11. Точечные оценки параметров распределений 310
12. Оценивание с помощью доверительных интервалов 337
13. Проверка статистических гипотез 367
14. Регрессионный и корреляционный анализ 406
Литература 454

Рейтинг: 4.8 баллов / 2537 оценок
Формат: Книга
Уже скачали: 12819 раз



Похожие Книги

Нам показалось, что Книги ниже Вас заинтересуют не меньше. Эти издания Вы так же можете скачивать и читать совершенно бесплатно на сайте!


Вы не зарегистрированы!

Если вы хотите скачивать книги, журналы и аудиокниги бесплатно, без рекламы и без смс, оставлять комментарии и отзывы, учавствовать в различных интересных мероприятиях, получать скидки в книжных магазинах и многое другое, то Вам необходимо зарегистрироваться в нашей Электронной Библиотеке.

Отзывы читателей


Ой!

К сожалению, в нашей Бесплатной Библиотеке пока нет отзывов о Книге Теория вероятностей и математическая статистика - Андронов А.М., Копытов Е.А., Гринглаз Л.Я.. Помогите нам и другим читателям окунуться в сюжет Книги и узнать Ваше мнение. Оставьте свой отзыв или обзор сейчас, это займет у Вас всего-лишь несколько минут.