Сборник задач по высшей математике - Минорский В.П.


Книга Сборник задач по высшей математике - Минорский В.П.

Название: Сборник задач по высшей математике. 2006.
Автор: Минорский В.П.
Подобраны и методически распределены задачи по аналитической геометрии и математическому анализу. В начале каждого параграфа приведены формулы, определения и другие краткие пояснения теории, необходимые для решения последующих задач. Сборник может быть использован при всех формах обучения. Для студентов высших технических учебных заведений.

ОГЛАВЛЕНИЕ
ИЗ ПРЕДИСЛОВИЯ АВТОРА К ТРЕТЬЕМУ ИЗДАНИЮ
От редакции 8
Глава 1 Аналитическая геомегрия на плоскости 9
§ 1 Координаты точки на прямой и на плоскости Расстояние
между двумя точками 9
§ 2 Деление отрезка в данном отношении Площадь треуголь
ника и многоугольника 11
§ 3 Уравнение линии как геометрического места точек 12
§ 4 Уравнение прямой: 1) с угловым коэффициентом, 2) об
щее, 3) в отрезках на осях 14
§ 5 Угол между прямыми Уравнение пучка прямых, проходящих через
данную точку Уравнение прямой, проходящей через две данные точки
Точка пересечения двух
прямых 16
§ 6 Нормальное уравнение прямой Расстояние от точки до прямой Уравнения
биссектрис Уравнение пучка прямых, проходящих через точку пересечения
двух данных прямых 19
§ 7 Смешанные задачи на прямую 21
§ 8 Окружность 22
§ 9 Эллипс 24
§ 10 Гипербола 26
§ 11 Парабола 29
§ 12 Директрисы, диаметры и касательные к кривым второго
порядка 32
§ 13 Преобразование декартовых координат Параболы у =
= ах2 + Ьх + с и х = ay2 + by + с Гипербола ху = к 35
§ 14 Смешанные задачи на кривые второго порядка 38
§ 15 Общее уравнение линии второго порядка 40
§ 16 Полярные координаты 44
§ 17 Алгебраические кривые третьего и высших порядков 48
§ 18 Трансцендентные кривые 49
Глава 2 Векторная алгебра 51
§ 1 Сложение векторов Умножение вектора на скаляр 51
§ 2 Прямоугольные координаты точки и вектора
в пространстве 53
§ 3 Скалярное произведение двух векторов 55
§ 4 Векторное произведение двух векторов 58
§ 5 Смешанное произведение трех векторов 60
Глава 3 Аналитическая геометрия в пространстве 62
§ 1 Уравнение плоскости 62
§ 2 Основные задачи на плоскость 63
§ 3 Уравнения прямой 65
§ 4 Прямая и плоскость 68
§ 5 Сферические и цилиндрические поверхности 70
§ 6 Конические поверхности и поверхности вращения 72
§ 7 Эллипсоид, гиперболоиды и параболоиды 74
Глава 4 Высшая алгебра 78
§ 1 Определители 78
§ 2 Системы линейных уравнений 80
§ 3 Комплексные числа 83
§ 4 Уравнения высших степеней и приближенное решение
уравнений 86
Глава 5 Введение в анализ 90
§ 1 Переменные величины и функции 90
§ 2 Пределы последовательности и функции Бесконечно ма
лые и бесконечно большие 93
§ 3 Свойства пределов Раскрытие неопределенностей
§ 4 Предел отношения при а
§ 5 Неопределенности вида
§ 6 Смешанные примеры на вычисление пределов 100
§ 7 Сравнение бесконечно малых 101
§ 8 Непрерывность функции 102
§ 9 Асимптоты 105
§ 10 Число е 106
Глава 6 Производная и дифференциал 108
§ 1 Производные алгебраических и тригонометрических
функций 108
§ 2 Производная сложной функции 110
§ 3 Касательная и нормаль к плоской кривой 111
§ 4 Случаи недифференцируемости непрерывной функции 113
§ 5 Производные логарифмических и показательных функций 114
§ 6 Производные обратных тригонометрических функций 116
§ 7 Производные гиперболических функций 117
§ 8 Смешанные примеры и задачи на дифференцирование 118
§ 9 Производные высших порядков 119
§ 10 Производная неявной функции 121
§11 Дифференциал функции 123
§ 12 Параметрические уравнения кривой 124
Глава 7 Приложения производной 127
§ 1 Скорость и ускорение 127
§ 2 Теоремы о среднем 128
§ 3 Раскрытие неопределенностей Правило Лопиталя 131
§ 4 Возрастание и убывание функции Максимум и минимум 133
§ 5 Задачи о наибольших и наименьших значениях величин 136
§ 6 Направление выпуклости и точки перегиба кривой
Построение кривых 138
Глава 8 Неопределенный интеграл 140
§ 1 Неопределенный интеграл Интегрирование разложением 140
§ 2 Интегрирование подстановкой и непосредственное 142
§ 3 Интегралы вида 
и к ним приводящиеся 145
§ 4 Интегрирование по частям 147
§ 5 Интегрирование тригонометрических функций 148
§ 6 Интегрирование рациональных алгебраических функций 150
§ 7 Интегрирование некоторых иррациональных алгебраиче
ских функций 152
§ 8 Интегрирование некоторых трансцендентных функций 155
§ 9 Интегрирование гиперболических функций Гиперболи
ческие подстановки 156
§ 10 Смешанные примеры на интегрирование 157
Глава 9 Определенный интеграл 160
§ 1 Вычисление определенного интеграла 160
§ 2 Вычисление площадей 163
§ 3 Объем тела вращения 165
§ 4 Длина дуги плоской кривой 167
§ 5 Площадь поверхности вращения 169
§ 6 Задачи из физики 170
§ 7 Несобственные интегралы 172
§ 8 Среднее значение функции 175
§ 9 Формула трапеций и формула Симпсона 176
Глава 10 Кривизна плоской и пространственной кривой 178
§ 1 Кривизна плоской кривой Центр и радиус кривизны
Эволюта 178
§2 Длина дуги кривой в пространстве 180
§3 Производная вектор-функции по скаляру и ее механиче
ское и геометрическое значение Естественный трех
гранник кривой 180
§ 4 Кривизна и кручение пространственной кривой 183
Глава 11 Частные производные, полные дифференциалы
и их приложения 185
§ 1 Функции двух переменных и их геометрическое изобра
жение 185
§ 2 Частные производные первого порядка 187
§ 3 Полный дифференциал первого порядка 189
§ 4 Производные сложных функций 191
§ 5 Производные неявных функций 192
§ 6 Частные производные и полные дифференциалы высших
порядков 194
§ 7 Интегрирование полных дифференциалов 198
§ 8 Особые точки плоской кривой 199
§ 9 Огибающая семейства плоских кривых 200
§ 10 Касательная плоскость и нормаль к поверхности 201
§ 11 Скалярное поле Линии и поверхности уровней
Производная в данном направлении Градиент 203
§ 12 Экстремум функции двух переменных 205
Глава 12 Дифференциальные уравнения 207
§ 1 Понятие о дифференциальном уравнении 207
§ 2 Дифференциальное уравнение первого порядка с разделяющимися
переменными Ортогональные траектории 208
§ 3 Дифференциальные уравнения первого порядка:
1) однородное, 2) линейное, 3) Бернулли 211
§ 4 Дифференциальные уравнения, содержащие дифферен
циалы произведения и частного 213
§ 5 Дифференциальные уравнения первого порядка в полных
дифференциалах Интегрирующий множитель 213
§ 6 Дифференциальные уравнения первого порядка, не раз
решенные относительно производной Уравнения
Лагранжа и Клеро 215
§ 7 Дифференциальные уравнения высших порядков, допус
кающие понижение порядка 217
§ 8 Линейные однородные дифференциальные уравнения с
постоянными коэффициентами 218
§ 9 Линейные неоднородные дифференциальные уравнения
с постоянными коэффициентами 219
§ 10 Примеры дифференциальных уравнений разных типов 221
§ 11 Линейное дифференциальное уравнение Эйлера
§ 12 Системы линейных дифференциальных уравнений с по
стоянными коэффициентами 223
§ 13 Линейные дифференциальные уравнения в частных про
изводных второго порядка (метод характеристик) 224
Глава 13 Двойные, тройные и криволинейные интегралы 226
§ 1 Вычисление площади с помощью двойного интеграла 226
§ 2 Центр масс и момент инерции площади с равномерно рас
пределенной массой (при плотности /i = 1) 228
§ 3 Вычисление объема с помощью двойного интеграла 230
§ 4 Площади кривых поверхностей 231
§ 5 Тройной интеграл и его приложения 232
§ 6 Криволинейный интеграл Формула Грина 234
§ 7 Поверхностные интегралы
Формулы Остроградского-Гаусса и Стокса 238
Глава 14 Ряды 242
§ 1 Числовые ряды 242
§ 2 Равномерная сходимость функционального ряда 245
§ 3 Степенные ряды 247
§ 4 Ряды Тейлора и Маклорена 249
§ 5 Приложения рядов к приближенным вычислениям 251
§ 6 Ряд Тейлора для функции двух переменных 254
§ 7 Ряд Фурье Интеграл Фурье 255
Ответы 260
Приложение Некоторые кривые (для справок) 332

Рейтинг: 4.8 баллов / 2537 оценок
Формат: Книга
Уже скачали: 12861 раз



Похожие Книги

Нам показалось, что Книги ниже Вас заинтересуют не меньше. Эти издания Вы так же можете скачивать и читать совершенно бесплатно на сайте!

  • Аудиокнига Про пухнастих та повзючих, про летючих та кусючих: Цікаві городяни (аудиокнига)

    Про пухнастих та повзючих, про летючих та кусючих: Цікаві городяни (аудиокнига)

    Автор: Межжеріна ЯрославаНазвание: Про пухнастих та повзючих, про летючих та кусючих: Цікаві городяниИсполнитель: Довгозвяга ГалинаВремя воспроизведения: 1:59:14Жанр: познавательнаяИздательство: Нигде . . .

  • Книга Тени войны.

    Тени войны.

    Название: Тени войны Автор: Алексей Оверчук Серия или выпуск: Журналист - 2 Издательство: Крылов ISBN: 5-9717-0050-2 Год издания: 2005 Страниц: 320 Язык: Русский Формат: fb2 Качество: отличное Размер: . . .

  • Книга Энн Мэтер. Сборник романов о любви

    Энн Мэтер. Сборник романов о любви

    Автор: Энн МэтерНазвание: Сборник произведенийИздательство: Радуга; ЦентрполиграфГод: 1993-2009Формат: RTFРазмер: 6.24 МбЯзык: РусскийСтраниц: >1000Сборник любовных романов известной британской писате . . .

  • Книга Дыхание по Фролову

    Дыхание по Фролову

    Дыхание - естественный, не контролируемый сознанием человека процесс, рефлекс, заложенный от природы. Кислород питает клетки и позволяет организму вырабатывать необходимую энергию. Однако с годами мех . . .

  • Книга Выбери жизнь

    Выбери жизнь

    Эта книга является новым пособием по самоизбавлению от вредных привычек — употребления спиртного, табакокурения, переедания, а также от болезней и болячек, многие из которых не поддаются лечению обычн . . .

  • Книга Беременность и работа.

    Беременность и работа.

    Название: Беременность и работа Автор: Пономарева Н.Г., Новиков Е.А. Серия или выпуск: Сам себе адвокат Издательство: Юрайт-Издат ISBN: 5-94879-690-6 Год издания: 2007 Страниц: 96 (40) Язык: Русский . . .

  • Книга Слава. Последний броненосец эпохи доцусимского судостроения. 1901-1917

    Слава. Последний броненосец эпохи доцусимского судостроения. 1901-1917

    Линейный корабль "Слава " был последним, пятым кораблем из самой большой серии броненосных линейных кораблей типа "Бородино", когда-либо строившихся на отечественных верфях. "Слава" отстал с достройко . . .

  • Книга Самоучитель по бухгалтерскому учету.

    Самоучитель по бухгалтерскому учету.

    Название: Самоучитель по бухгалтерскому учету Автор: Пономарева Г.А. Издательство: Приор ISBN: 5-7990-0593-7 Год издания: 2002 Страниц: 162 Язык: Русский Формат: djvu Качество: отличное Размер: 3.4 . . .

  • Книга Боевые искусства

    Боевые искусства

    В книге рассматриваютс эффективные, проверенные практикой и достаточно простые в использовании приемы самозащиты, отобранные из различных видов боевых искусств- САМБО, ДЗЮДО, АЙКИДО, ТАЭКВОНДО, УШУ. З . . .

  • Аудиокнига Bridge to English Deluxe: Англо-русский + Англо-английский тренажер словарного запаса

    Bridge to English Deluxe: Англо-русский + Англо-английский тренажер словарного запаса

    Автор:КоллективНазвание: Bridge to English Deluxe: Англо-русский + Англо-английский тренажер словарного запасаИздательство: ИнтенсГод: 2007Формат: ISOРазмер: 1270МВСтраниц:1000Благодаря уникальным упр . . .


Вы не зарегистрированы!

Если вы хотите скачивать книги, журналы и аудиокниги бесплатно, без рекламы и без смс, оставлять комментарии и отзывы, учавствовать в различных интересных мероприятиях, получать скидки в книжных магазинах и многое другое, то Вам необходимо зарегистрироваться в нашей Электронной Библиотеке.

Отзывы читателей


Ой!

К сожалению, в нашей Бесплатной Библиотеке пока нет отзывов о Книге Сборник задач по высшей математике - Минорский В.П.. Помогите нам и другим читателям окунуться в сюжет Книги и узнать Ваше мнение. Оставьте свой отзыв или обзор сейчас, это займет у Вас всего-лишь несколько минут.