Сборник задач по математике для втузов, Часть 2, Ефимова А.В., Поспелова А.С., 2001.
Содержит задачи по основам математического анализа, а также дифференциальному и интегральному исчислениям функций одной и нескольких переменных, дифференциальным уравнениям и кратным интегралам. Краткие теоретические сведения, снабженные большим количеством разобранных примеров, позволяют использовать сборник для всех видов обучения. Для студентов высших технических учебных заведений.
Примеры.
Доказать, что предел функции у = f(x) во внутренней точке x0 области ее определения существует тогда и только тогда, когда в этой точке существуют левый и правый пределы и они совпадают.
Составить уравнение такой нормали к параболе у = х2 - 6x + 6, которая перпендикулярна к прямой, соединяющей начало координат с вершиной параболы.
В точках пересечения прямой х - у + 1 = 0 и параболы у = х2 - 4х + 5 проведены нормали к параболе. Найти площадь треугольника, образованного нормалями и хордой, стягивающей указанные точки пересечения.
ОГЛАВЛЕНИЕ
ПРЕДИСЛОВИЕ ТИТУЛЬНЫХ РЕДАКТОРОВ б
Глава 5. Введение в анализ 7
§ 1. Действительные числа. Множества. Логическая символика 7
1. Понятие действительного числа. 2. Множества и операции над ними. 3. Верхние и нижние грани. 4. Логическая символика
§ 2. Функции действительной переменной 17
1. Понятие функции. 2. Элементарные функции и их графики
§ 3. Предел последовательности действительных чисел 25
1. Понятие последовательности. 2. Предел последовательности
§ 4. Предел функции. Непрерывность 28
1. Предел функции. 2. Бесконечно малые и бесконечно большие. 3. Непрерывность функции в точке. Классификация точек разрыва. 4. Непрерывность на множестве. Равномерная непрерывность
§ 5. Комплексные числа 39
1. Алгебраические операции над комплексными числами. 2. Многочлены и алгебраические уравнения. 3. Предел последовательности комплексных чисел
Глава 6. Дифференциальное исчисление функций одной переменной 51
§ 1. Производная 51
1. Определение производной. Дифференцирование явно заданных функций. 2. Дифференцирование функций, заданных не¬явно или параметрически. 3. Производные высших порядков. 4. Геометрические и механические приложения производной
§ 2. Дифференциал 72
1. Дифференциал 1-го порядка. 2. Дифференциалы высших порядков
§ 3. Теоремы о дифференцируемых функциях. Формула Тейлора 77
1. Теоремы о среднем. 2. Правило Лопиталя-Бернулли. 3. Формула Тейлора
§ 4. Исследование функций и построение графиков 86
1. Возрастание и убывание функции. Экстремум. 2. Направление выпуклости. Точки перегиба. 3. Асимптомы. 4. Построение графиков функций
§ 5. Векторные и комплексные функции действительной переменной 99
1. Определение вектор-функции действительной переменной. 2. Дифференцирование вектор-функции. 3. Касательная к пространственной кривой и нормальная плоскость. 4. Дифференциальные характеристики плоских кривых. 5. Дифференциальные характеристики пространственных кривых, б. Комплексные функции действительной переменной
Глава 7. Интегральное исчисление функций одной переменной 115
§ 1. Основные методы вычисления неопределенного интеграла 115
1. Первообразная и неопределенный интеграл. 2. Метод замены переменной. 3. Метод интегрирования по частям
§ 2. Интегрирование основных классов элементарных функций 126
1. Интегрирование рациональных дробей. 2. Интегрирование тригонометрических и гиперболический функций. 3. Интегрирование некоторых иррациональных функций
§ 3. Смешанные задачи на интегрирование 142
§ 4. Определенный интеграл и методы его вычисления 144
1. Определенный интеграл как предел интегральной суммы. 2. Вычисление простейших интегралов с помощью формулы Ньютона-Лейбница. 3. Свойства определенного интеграла. 4. Замена переменной в определенном интеграле. 5. Интегрирование по частям
§ 5. Несобственные интегралы 156
1. Интегралы с бесконечными пределами. 2. Интегралы от неограниченных функций
§ 6. Геометрические приложения определенного интеграла 162
1. Площадь плоской фигуры. 2. Длина дуги кривой. 3. Площадь поверхности вращения. 4. Объем тела
§ 7. Приложения определенного интеграла к решению некоторых задач механики и физики 177
1. Моменты и центры масс плоских кривых. 2. Физические задачи
Глава 8. Дифференциальное исчисление функций нескольких переменных 185
§ 1. Основные понятия 185
1. Понятия функции нескольких переменных. 2. Предел и непрерывность функции. 3. Частные производные. 4. Дифференциал функции и его применение
§ 2. Дифференцирование сложных и неявных функций 199
1. Сложные функции одной и нескольких независимых переменных. 2. Неявные функции одной и нескольких независимых переменных. 3. Системы неявных и параметрически заданных функций. 4. Замена переменных в дифференциальных выражениях
§ 3. Приложения частных производных 214
1. Формула Тейлора. 2. Экстремум функции. 3. Условный экстремум. 4. Наибольшее и наименьшее значения функции. 5. Геометрические приложения частных производных
§ 4. Приближенные числа и действия над ними 230
1. Абсолютная и относительная погрешности. 2. Действия над приближенными числами
Глава 9. Кратные интегралы 236
§ 1. Двойной интеграл 236
1. Свойства двойного интеграла и его вычисление в декартовых прямоугольных координатах. 2. Замена переменных в двойном интеграле. 3. Приложения двойных интегралов
§ 2. Тройной интеграл 254
1. Тройной интеграл и его вычисление в декартовых прямоугольных координатах. 2. Замена переменных в тройном интеграле. 3. Приложения тройных интегралов
§ 3. Несобственные кратные интегралы 263
1. Интеграл по бесконечной области. 2. Интеграл от разрывной функции
§ 4. Вычисление интегралов, зависящих от параметра 267
1. Собственные интегралы, зависящие от параметра. 2. Несобственные интегралы, зависящие от параметра
Глава 10. Дифференциальные уравнения 276
§ 1. Уравнения 1-го порядка 276
1. Основные понятия. 2. Графический метод построения интегральных кривых (метод изоклин). 3. Уравнения с разделяющимися переменными. 4. Однородные уравнения. 5. Линейные уравнения, б. Уравнение Бернулли. 7. Уравнения в полных дифференциалах. 8. Теорема о существовании и единственности решения. Особые решения. 9. Уравнения, не разрешенные относительно производной. 10. Смешанные задачи на дифференциальные уравнения 1-го порядка. 11. Геометрические и физические задачи, приводящие к решению дифференциальных уравнений 1-го порядка
§ 2. Дифференциальные уравнения высших порядков 304
1. Основные понятия. Теорема Коши. 2. Уравнения, допускающие понижение порядка. 3. Линейные однородные уравнения. 4. Линейные неоднородные уравнения. 5. Линейные однородные уравнения с постоянными коэффициентами, б. Линейные неоднородные уравнения с постоянными коэффициентами. 7. Дифференциальные уравнения Эйлера. 8. Краевые задачи в случае линейных дифференциальных уравнений. 9. Задачи физического характера
§ 3. Системы дифференциальных уравнений 331
1. Основные понятия. Связь с дифференциальными уравнениями n-го порядка. 2. Методы интегрирования нормальных систем. 3. Физический смысл нормальной системы. 4. Линейные однородные системы. 5. Линейные неоднородные системы
§ 4. Элементы теории устойчивости 349
1. Основные понятия. 2. Простейшие типы точек покоя. 3. Метод функций Ляпунова. 4. Устойчивость по первому приближению
ОТВЕТЫ И УКАЗАНИЯ 358.
Рейтинг: | 4.8 баллов / 2537 оценок |
Формат: | Книга |
Уже скачали: | 12800 раз |
Нам показалось, что Книги ниже Вас заинтересуют не меньше. Эти издания Вы так же можете скачивать и читать совершенно бесплатно на сайте!
Название: SaveurГод / месяц: May 2014Номер: 4Формат: pdfСтраниц: 100Язык: EnglishРазмер: 20,5 MbSaveur — популярный английский кулинарный журнал для любителейи профессионаловSaveur is for people who e . . .
Название: Fabric-a issue Номер: issue 6 "Imagination" - March 2014Формат: pdf Страниц:84 Язык:English Размер: 19,1 Mb Журнал креативной фотографии; выпуск 6 воображение и фантазияdepositfiles.comt . . .
Название: Очень вкусно - ели самиГод / месяц: 2014 / апрельНомер: 3Формат: PDFРазмер: 35,27 МбЭто издание - в помощь тем, кто любит разнообразить свое повседневное меню или только начинает осваивать к . . .
Год: 1997Жанр: Нумизматика, бонистика, фалеристика.Издательство: ЛогосISSN: 1811-542XЯзык: Русский/ УкраинскийФормат: PDFКачество: Отсканированные страницыКоличество страниц: 52Размер: 40.56 MBОписани . . .
Название: Purely Spring Magazine Год / месяц:April 2014 Номер: 4 Формат: pdf Страниц: 64 Язык:English Размер:34,4 Mb Весенний журнал о весенней пище, одежде и всем остальномdepositfiles.comturbobi . . .
Название:New Electronics Год / месяц: 22 April 2014 Формат: pdf Страниц: 44 Язык:English Размер: 11,3 Mb With its blend of technology features, news and new product information New Electronics keep . . .
Название: Electronique PratiqueГод / месяц: 1988 / февральНомер: 112Язык: французскийФормат: pdfРазмер: 54,62 МбElectronique Pratique - популярный французский журнал по электронике и схемотехнике. Для . . .
Название: Electronique PratiqueГод / месяц: 1988 / январьНомер: 111Язык: французскийФормат: pdfРазмер: 55,72 МбElectronique Pratique - популярный французский журнал по электронике и схемотехнике. Для . . .
Название: Ветры, ангелы и люди (аудиокнига) Автор: Макс Фрай Издательство: Аудиокнига Год издания: 2014 Язык: Русский Формат: MP3 Битрейт аудио: 64 kbps Время звучания: 10:31:19 Читает: Владимир Мас . . .
Название: Пришлый. Дилогия одним томом Автор: Платонов Андрей Серия или выпуск: Пришлый 1-2 Издательство: СамИздат Год издания: 2014 Страниц: 700 Язык: Русский Формат: rtf, fb2 / rar Качество: отлич . . .
Если вы хотите скачивать книги, журналы и аудиокниги бесплатно, без рекламы и без смс, оставлять комментарии и отзывы, учавствовать в различных интересных мероприятиях, получать скидки в книжных магазинах и многое другое, то Вам необходимо зарегистрироваться в нашей Электронной Библиотеке.
К сожалению, в нашей Бесплатной Библиотеке пока нет отзывов о Книге Сборник задач по математике для втузов, Часть 2, Ефимова А.В., Поспелова А.С., 2001. Помогите нам и другим читателям окунуться в сюжет Книги и узнать Ваше мнение. Оставьте свой отзыв или обзор сейчас, это займет у Вас всего-лишь несколько минут.