Сборник задач и упражнений по математическому анализу, Демидович Б.П., 1997.
В сборник включено свыше 4000 задач и упражнений по важнейшим разделам математического анализа: введение в анализ, дифференциальное исчисление функций одной переменной, неопределенный и определенный интегралы, ряды, дифференциальное исчисление функций нескольких переменных, интегралы, зависящие от параметра, кратные и криволинейные интегралы. Почти ко всем задача даны ответы! В приложении помещены ответы. Для студентов физических и механико-математических специальностей высших учебных заведений.
Вещественные числа.
1. Метод математической индукции. Чтобы доказать, что некоторая теорема верна для всякого натурального числа п, достаточно доказать: 1) что эта теорема справедлива для n = 1 и 2) что если эта теорема справедлива для какого-нибудь натурального числа п, то она справедлива также и для следующего натурального числа n+1.
2. Сечение. Разбиение рациональных чисел на два класса А и В называется сечением, если выполнены следующие условия: 1) оба класса не пусты; 2) каждое рациональное число попадает в один и только в одни класс и 3) любое число, принадлежащее классу А (нижний класс), меньше произвольного числа, принадлежащего классу В (верхний класс), Сечение А/В определяет: а) рациональное число, если или нижний класс А имеет наибольшее число или же верхний класс В имеет наименьшее число, и б) иррациональное число, если класс А не имеет наибольшего числа, а класс В — наименьшего числа. Числа рациональные и иррациональные носят название вещественных или действительных *).
ОГЛАВЛЕНИЕ
ЧАСТЬ ПЕРВАЯ ФУНКЦИИ ОДНОЙ НЕЗАВИСИМОЙ ПЕРЕМЕННОЙ
Отдел I. Введение в анализ 7
§ 1. Вещественные числа 7
§ 2. Теория последовательностей 12
§ 3. Понятие функции 26
§ 4. Графическое изображение функции 35
§ 5. Предел функции 47
§ 6. О-символика 72
§ 7. Непрерывность функции 77
§ 8. Обратная функция. Функции, заданные параметрически 87
§ 9. Равномерная непрерывность функции 90
§ 10. Функциональные уравнения 94
Отдел II. Дифференциальное исчисление функций одной переменной 96
§ 1. Производная явной функции 96
§ 2. Производная обратной функции. Производная функции, заданной параметрически. Производная функции, заданной в неявном виде 114
§ 3. Геометрический смысл производной 117
§ 4. Дифференциал функции 120
§ 5. Производные и дифференциалы высших порядков 124
§ 6. Теоремы Ролля, Лагранжа и Коши 134
§ 7. Возрастание и убывание функции. Неравенства 140
§ 8. Направление вогнутости. Точки перегиба 144
§ 9. Раскрытие неопределенностей 147
§ 10. Формула Тейлора 151
§ 11. Экстремум функции. Наибольшее и наименьшее значения функции 156
§ 12. Построение графиков функций по характерным точкам 161
§ 13. Задачи на максимум и минимум функций 164
§ 14. Касание кривых. Круг кривизны. Эволюта 167
§ 15. Приближенное решение уравнений 170
Отдел III. Неопределенный интеграл 172
§ 1. Простейшие неопределенные интегралы 172
§ 2. Интегрирование рациональных функций 184
§ 3. Интегрирование некоторых иррациональных функций 187
§ 4. Интегрирование тригонометрических функций 192
§ 5. Интегрирование различных трансцендентных функций 198
§ 6. Разные примеры на интегрирование функций 201
Отдел IV. Определенный интеграл 204
§ 1. Определенный интеграл как предел суммы 204
§ 2. Вычисление определенных интегралов с помощью неопределенных 208
§ 3. Теоремы о среднем 219
§ 4. Несобственные интегралы 223
§ 5. Вычисление площадей 230
§ 6. Вычисление длин дуг 234
§ 7. Вычисление объемов 236
§ 8. Вычисление площадей поверхностей вращения 239
§ 9. Вычисление моментов. Координаты центра тяжести 240
§ 10. Задачи из механики и физики 242
§ 11. Приближенное вычисление определенных интегралов 244
Отдел V. Ряды 246
§ 1. Числовые ряды. Признаки сходимости знакопостоянных рядов 246
§ 2. Признаки сходимости знакопеременных рядов 259
§ 3. Действия над рядами 267
§ 4. Функциональные ряды 268
§ 5. Степенные ряды 281
§ 6. Ряды Фурье 294
§ 7. Суммирование рядов 300
§ 8. Нахождение определенных интегралов с помощью рядов 305
§ 9. Бесконечные произведения 307
§ 10. Формула Стирлинга 314
§ 11. Приближение непрерывных функций многочленами 315
ЧАСТЬ ВТОРАЯ
ФУНКЦИИ НЕСКОЛЬКИХ ПЕРЕМЕННЫХ
Отдел VI. Дифференциальное исчисление функций нескольких переменных 318
§ 1. Предел функции. Непрерывность 318
§ 2. Частные производные. Дифференциал функции 324
§ 3. Дифференцирование неявных функций 338
§ 4. Замена переменных 348
§ 5. Геометрические приложения 361
§ 6. Формула Тейлора 367
§ 7. Экстремум функции нескольких переменных 370
Отдел VII. Интегралы, зависящие от параметра 379
§ 1. Собственные интегралы, зависящие от параметра 379
§ 2. Несобственные интегралы, зависящие от параметра. Равномерная сходимость интегралов 385
§ 3. Дифференцирование н интегрирование несобственных интегралов под знаком интеграла 392
§ 4. Эйлеровы интегралы 400
§ 5. Интегральная формула Фурье 404
Отдел VIII. Кратные и криволинейные интегралы 406
§ 1. Двойные интегралы 406
§ 2. Вычисление площадей 414
§ 3. Вычисление объемов 416
§ 4. Вычисление площадей поверхностей 419
§ 5. Приложения двойных интегралов к механике 421
§ 6. Тройные интегралы 424
§ 7. Вычисление объемов с помощью тройных интегралов 428
§ 8. Приложения тройных интегралов к механике 431
§ 9. Несобственные двойные и тройные интегралы 435
§ 10. Многократные интегралы 439
§ 11. Криволинейные интегралы 443
§ 12. Формула Грина 452
§ 13. Физические приложения криволинейных интегралов 456
§ 14. Поверхностные интегралы 460
§ 15. Формула Стокса 464
§ 16. Формула Остроградского 466
§ 17. Элементы теории поля 471
Ответы 480.
Рейтинг: | 4.8 баллов / 2537 оценок |
Формат: | Книга |
Уже скачали: | 12822 раз |
Нам показалось, что Книги ниже Вас заинтересуют не меньше. Эти издания Вы так же можете скачивать и читать совершенно бесплатно на сайте!
Название: ТанкиАвтор: Шунков В. Н.Издательство: ПопурриГод: 2000Страниц: 408Формат: Djvu -> RARРазмер: 40.25 MbISBN: 985-438-405-5Качество: хорошееЯзык: русскийВ предлагаемом читателю справочнике собр . . .
Название:The First World War Vol.I To ArmsАвтор: Hew StrachanИздательство: Oxford University press Год издания: 2001Язык: английский Страниц: 1248Формат: PDF Размер: 82 MbThis book was commissioned, f . . .
Автор: А. СкворцовНазвание: Канонерские лодки типа "Гиляк"[Мидель-шпангоут №-17]Издательство: ГангутГод: 2009Формат: PDFРазмер: 137 МбДля сайта: www.bankknig.netДанная монография посвящена исследован . . .
Автор: Скворцов В.Н.Название: 30 дней войныИздательство: ПолитиздатГод: 1981Страниц: 239Размер: 2 мбФормат: djvu Качество: среднееВ феврале 1979 года части китайской армии перешли границу Социалистиче . . .
Автор: Dan Beattie:Название: Brandy Station 1863: First step towards Gettysburg [Osprey Campaign 201]: Серия: Osprey Campaign 201: Издательство: Osprey Publishing Ltd: Страниц: 96: Язык: Английский: Г . . .
Автор: Авторский коллективНазвание: Танковый прорыв. Советские танки в боях 1937—1942 гг.Издательство: ЯузаГод: 2007ISBN: 978-5-699-20460-1Страниц: 448 Размер: 4.9 мбФормат: pdf + fb2Качество: хорошее . . .
Автор:А. Павлов, С.ВойлоковНазвание: Истребитель МИГ-29 в строевых частях (История, Символика, Окраски)Издательство: N/AГод: 2009Формат: PDFРазмер: 60 МБДля сайта: www.bankknig.netИздание посвящено од . . .
Название: Encyclopedie des Uniformes Napoleoniens 1800-1815Автор: V. Bourgeot, A. PigeardИздательство: Editions QuatuorГод: 2003Страниц: 670Язык: frenchФормат: pdfРазмер: 123(+3%)МбКачество: хорошее . . .
Автор:Высшая школа КГБ им. Ф.Э. ДзержинскогоНазвание: Контрразведывательный словарьИздательство: Научно-издательский отдел ВШКГБ им. Ф.Э. ДзержинскогоГод: 1972Формат: PDFРазмер: 21 МбДля сайта: www.ba . . .
Название: Cockpit Profile 2 - Deutsche Flugzeugcockpits und Instrumentenbretter Teil 2. Dreissiger Jahre - AGO - GothaАвтор: Peter W. CohauszИздательство: Flugzeug Publikations GmbHГод: 1997Страниц: 4 . . .
Если вы хотите скачивать книги, журналы и аудиокниги бесплатно, без рекламы и без смс, оставлять комментарии и отзывы, учавствовать в различных интересных мероприятиях, получать скидки в книжных магазинах и многое другое, то Вам необходимо зарегистрироваться в нашей Электронной Библиотеке.
К сожалению, в нашей Бесплатной Библиотеке пока нет отзывов о Книге Сборник задач и упражнений по математическому анализу, Демидович Б.П., 1997. Помогите нам и другим читателям окунуться в сюжет Книги и узнать Ваше мнение. Оставьте свой отзыв или обзор сейчас, это займет у Вас всего-лишь несколько минут.