Основы математики и ее приложения в экономическом образовании, Красс М.С., Чупрынов Б.П., 2003.
Изложены основы математического анализа, линейной алгебры, дифференциальных уравнении, теории вероятностей. Приведены основные элементы теории и методы оптимизации, используемые в различных экономических приложениях. Представлено большое число разобранных задач, имеется обширная подборка задач для самостоятельных упражнений и контрольных заданий. Материал полностью соответствует государственному образовательному стандарту высшего образования для экономических специальностей.
Для студентов, аспирантов и преподавателей экономических и смежных технических специальностей ВУЗов, экономистов-практиков, а также слушателей заочного и дистанционного обучения.
Математика — одна из самых древних наук. Она появилась из насущных нужд человека, когда возникла потребность в количественном отображении окружающего его мира.
Статус самостоятельной науки математика приобрела в Древней Греции примерно в VI в. до н.э. Все философские школы того времени включали математику в круг вопросов миросозерцания; строгий язык формальной логики (именно он стал языком математики) формировал уровень и строй мышления. В III в. до н. э. математика выделилась из философии, что отражено в "Началах" —эпохальном труде, прославившем в веках имя Евклида и заложившем фундамент классической геометрии. Более двух тысяч лет математику изучали по этой книге.
Много веков после этого математика практически не эволюционировала, XVII век стал эпохой ее бурного развития. Применение математики Галилеем и Кеплером в исследовании движения небесных тел привело к поразительным по тому времени открытиям — законам движения планет вокруг Солнца. Труды Декарта, Ньютона и Лейбница ознаменовали новый этап развития математики — появление математики переменных величин. Начинается период дифференциации единой науки на ряд самостоятельных математических наук: алгебру, математический анализ, аналитическую геометрию. В свою очередь это инициировало интенсивное развитие физики и астрономии.
Оглавление
Предисловие
Введение
РАЗДЕЛ I ОСНОВЫ МАТЕМАТИКИ
Часть 1. МАТЕМАТИЧЕСКИЙ АНАЛИЗ
Глава 1. МНОЖЕСТВА
1.1. Множества. Основные обозначения
Операции над множествами
1.2. Вещественные числа и их свойства
1.3. Числовая прямая (числовая ось) и множества на ней.
1.4. Грани числовых множеств
1.5. Абсолютная величина числа
Упражнения
Глава 2. ПРЕДЕЛ ПОСЛЕДОВАТЕЛЬНОСТИ
2.1. Числовые последовательности
2.2. Применение в экономике
Упражнения
Глава 3. ФУНКЦИИ ОДНОЙ ПЕРЕМЕННОЙ
3.1. Понятие функции
3.2. Предел функции
3.3. Теоремы о пределах функций
3.4. Два замечательных предела
3.5. Бесконечно малые и бесконечно большие функции
3.6. Понятие непрерывности функции
3.7. Непрерывность элементарных функций
3.8. Понятие сложной функции
3.9. Элементы аналитической геометрии на плоскости
Упражнения
Глава 4. ОСНОВЫ ДИФФЕРЕНЦИАЛЬНОГО ИСЧИСЛЕНИЯ
4.1. Понятие производной
4.2. Понятие дифференциала функции
4.3. Правила дифференцирования суммы, произведения и частного
4.4. Таблица производных простейших элементарных функций
4.5. Дифференцирование сложной функции
4.6. Понятие производной n-ro порядка
Упражнения
Глава 5. ПРИМЕНЕНИЕ ПРОИЗВОДНЫХ В ИССЛЕДОВАНИИ ФУНКЦИЙ
5.1. Раскрытие неопределенностей
5.2. Формула Маклорена
5.3. Исследование функций и построение графиков
5.4. Применение в экономике
Упражнения
Глава 6. НЕОПРЕДЕЛЕННЫЙ ИНТЕГРАЛ
6.1. Первообразная и неопределенный интеграл
6.2. Основные свойства неопределенного интеграла
6.3. Таблица основных неопределенных интегралов
6.4. Основные методы интегрирования
Упражнения
Глава 7. ОПРЕДЕЛЕННЫЙ ИНТЕГРАЛ
7.1. Условия существования определенного интеграла
7.2. Основные свойства определенного интеграла
7.3. Основная формула интегрального исчисления
7.4. Основные правила интегрирования
7.5. Геометрические приложения определенного интеграла
7.6. Некоторые приложения в экономике
7.7. Несобственные интегралы
Упражнения
Глава 8. ФУНКЦИИ НЕСКОЛЬКИХ ПЕРЕМЕННЫХ
8.1. Евклидово пространство Еm
8.2. Множества точек евклидова пространства Еm
8.3. Частные производные функции нескольких переменных
8.4. Локальный экстремум функции нескольких переменных
8.5. Применение в задачах экономики
Упражнения
Часть 2. ЭЛЕМЕНТЫ ТЕОРИИ ОБЫКНОВЕННЫХ ДИФФЕРЕНЦИАЛЬНЫХ УРАВНЕНИЙ
Глава 9. ДИФФЕРЕНЦИАЛЬНЫЕ УРАВНЕНИЯ ПЕРВОГО ПОРЯДКА
9.1. Основные понятия
9.2. Уравнения с разделяющимися переменными
9.3. Неполные уравнения
9.4. Линейные уравнения первого порядка
Упражнения
Глава 10. ДИФФЕРЕНЦИАЛЬНЫЕ УРАВНЕНИЯ ВТОРОГО ПОРЯДКА
10.1. Основные понятия теории
10.2. Уравнения, допускающие понижение порядка
10.3. Линейные дифференциальные уравнения второго порядка с постоянными коэффициентами
10.4. Краевая задача для дифференциального уравнения второго порядка
Упражнения
Глава 11. АППАРАТ ДИФФЕРЕНЦИАЛЬНЫХ УРАВНЕНИЙ В ЭКОНОМИКЕ
11.1. Дифференциальные уравнения первого порядка
11.2. Дифференциальные уравнения второго порядка (модель рынка с прогнозируемыми ценами)
Упражнения
Часть 3. ЭЛЕМЕНТЫ ЛИНЕЙНОЙ АЛГЕБРЫ
Глава 12. ВЕКТОРЫ
12.1. Векторное пространство
12.2. Линейная зависимость векторов
12.3. Разложение вектора по базису
Упражнения
Глава 13. МАТРИЦЫ
13.1. Матрицы и операции над ними
13.2. Обратная матрица
Упражнения
Глава 14. ОПРЕДЕЛИТЕЛИ
14.1. Операции над определителями и основные свойства
14.2. Ранг матрицы и системы векторов
Упражнения
Глава 15. СИСТЕМЫ ЛИНЕЙНЫХ АЛГЕБРАИЧЕСКИХ УРАВНЕНИЙ
15.1. Основные понятия
15.2. Методы решения систем линейных уравнений
15.3. Вычисление обратной матрицы методом Гаусса
15.4. Геометрическая интерпретация системы линейных уравнений
15.5. Однородные системы линейных уравнений
Упражнения
Глава 16. ПРИМЕНЕНИЕ ЭЛЕМЕНТОВ ЛИНЕЙНОЙ АЛГЕБРЫ В ЭКОНОМИКЕ
16.1. Использование алгебры матриц
16.2. Модель Леонтьева многоотраслевой экономики
16.3. Линейная модель торговли
Упражнения
Часть 4. ЭЛЕМЕНТЫ ТЕОРИИ ВЕРОЯТНОСТЕЙ
Глава 17. ОСНОВНЫЕ ПОЛОЖЕНИЯ ТЕОРИИ ВЕРОЯТНОСТЕЙ
17.1. Основные понятия теории вероятностей
17.2. Теорема сложения вероятностей
17.3. Теорема умножения вероятностей
17.4. Обобщения теорем сложения и умножения
17.5. Схема независимых испытаний
Упражнения
Глава 18. СЛУЧАЙНЫЕ ВЕЛИЧИНЫ
18.1. Случайные величины и законы их распределения
18.2. Числовые характеристики дискретных случайных величин
18.3. Система двух случайных величин
18.4. Непрерывные случайные величины
18.5. Основные распределения непрерывных случайных величин
18.6. Некоторые элементы математической статистики Упражнения
РАЗДЕЛ II ОСНОВЫ ОПТИМАЛЬНОГО УПРАВЛЕНИЯ
Часть 5. ЭЛЕМЕНТЫ ЛИНЕЙНОГО ПРОГРАММИРОВАНИЯ
Глава 19. ЭЛЕМЕНТЫ АНАЛИТИЧЕСКОЙ ГЕОМЕТРИИ В «МЕРНОМ ПРОСТРАНСТВЕ
19.1. Основные понятия и определения
19.2. Решение систем т линейных неравенств с двумя переменными
Упражнения
Глава 20. ГРАФИЧЕСКИЙ МЕТОД
20.1. Постановка задачи
20.2. Алгоритм решения задач
20.3. Выбор оптимального варианта выпуска изделий
20.4. Экономический анализ задач с использованием графического метода
Упражнения
Глава 21. СИМПЛЕКСНЫЙ МЕТОД
21.1. Общая постановка задачи
21.2. Алгоритм симплексного метода
21.3. Анализ эффективности использования производственного потенциала предприятия
21.4. Альтернативный оптимум
Упражнения
Глава 22. ДВОЙСТВЕННОСТЬ В ЛИНЕЙНОМ ПРОГРАММИРОВАНИИ
22.1. Виды двойственных задач и составление их математических моделей
22.2. Основные теоремы двойственности
22.3. Решение двойственных задач
22.4. Экономический анализ задач с использованием теории двойственности
22.5. Стратегическое планирование выпуска изделий с учетом имеющихся ресурсов
Упражнения
Глава 23. ТРАНСПОРТНАЯ ЗАДАЧА
23.1. Общая постановка задачи
23.2. Нахождение исходного опорного решения
23.3. Определение эффективного варианта доставки изделий к потребителю
23.4. Проверка найденного опорного решения на оптимальность
23.5. Переход от одного опорного решения к другому
23.6. Альтернативный оптимум в транспортных задачах
23.7. Вырожденность в транспортных задачах
23.8. Открытая транспортная задача
23.9. Определение оптимального варианта перевозки грузов с учетом трансформации спроса и предложений
23.10. Экономический анализ транспортных задач
23.11. Приложение транспортных моделей к решению некоторых экономических задач
23.12. Выбор оптимального варианта использования производственного оборудования
Упражнения
Глава 24. ЦЕЛОЧИСЛЕННОЕ ПРОГРАММИРОВАНИЕ
24.1. Общая формулировка задачи
24.2. Графический метод решения задач
24.3. Прогнозирование эффективного использования производственных площадей
24.4. Метод Гомори
Упражнения
Глава 25. ПАРАМЕТРИЧЕСКОЕ ЛИНЕЙНОЕ ПРОГРАММИРОВАНИЕ
25.1. Постановка задачи
25.2. Линейное программирование с параметром в целевой функции
25.3. Определение диапазона оптимального решения выпуска продукции при изменении условий реализации
25.4. Транспортная параметрическая задача
25.5. Нахождение оптимальных путей транспортировки грузов при нестабильной загрузке дорог
Упражнения
Глава 26. ЗАДАЧА О НАЗНАЧЕНИЯХ
26.1. Постановка задачи
26.2. Алгоритм решения задачи
26.3. Планирование загрузки оборудования с учетом максимальной производительности станков
26.4. Выбор инвестиционных проектов в условиях ограниченности финансовых ресурсов
Упражнения
Глава 27. ЗАДАЧИ С НЕСКОЛЬКИМИ ЦЕЛЕВЫМИ ФУНКЦИЯМИ
27.1. Формулировка задачи
27.2. Математическая модель нахождения компромиссного решения
27.3. Определение оптимального выпуска продукции при многокритериальных экономических показателях
Упражнения
Часть 6. ЭЛЕМЕНТЫ ОПТИМАЛЬНОГО УПРАВЛЕНИЯ
Глава 28. НЕЛИНЕЙНОЕ ПРОГРАММИРОВАНИЕ
28.1. Общая постановка задачи
28.2. Графический метод
28.3. Дробно-линейное программирование
28.4. Метод множителей Лагранжа
Упражнения
Глава 29. ДИНАМИЧЕСКОЕ ПРОГРАММИРОВАНИЕ
29.1. Постановка задачи
29.2. Некоторые экономические задачи, решаемые методами динамического программирования
Упражнения
Глава 30. СЕТЕВЫЕ МОДЕЛИ
30.1. Основные понятия сетевой модели
30.2. Минимизация сети
Упражнения
Часть 7. ПРИНЯТИЕ РЕШЕНИЙ И ЭЛЕМЕНТЫ ПЛАНИРОВАНИЯ
Глава 31. ОСНОВНЫЕ ПОНЯТИЯ ТЕОРИИ ИГР
31.1. Графическое решение игр вида (2хn) и (mх2)
31.2. Решение игр (а)mxn с помощью линейного программирования
31.3. Применение матричных игр в маркетинговых исследованиях
31.4. Сведение матричной игры к модели линейного программирования
31.5. Игры с «природой»
31.6. Определение производственной программы предприятия в условиях риска и неопределенности с использованием матричных игр
31.7. «Дерево» решений
Упражнения
Глава 32. ЭЛЕМЕНТЫ СИСТЕМЫ МАССОВОГО ОБСЛУЖИВАНИЯ (СМО)
32.1. Формулировка задачи и характеристики СМО
32.2. СМО с отказами
32.3. СМО с неограниченным ожиданием
32.4. СМО с ожиданием и с ограниченной длиной очереди
32.5. Определение эффективности использования трудовых и производственных ресурсов в системах массового обслуживания
Упражнения _
Глава 33. НЕКОТОРЫЕ МОДЕЛИ УПРАВЛЕНИЯ ЗАПАСАМИ
33.1. Общая постановка задачи
33.2. Основная модель управления запасами
33.3. Модель производственных запасов
33.4. Модель запасов, включающая штрафы
33.5. Решение экономических задач с использованием моделей управления запасами
Упражнения
Часть 8. ПРАКТИКУМ
Ответы к упражнениям
Приложение
Литература
Предметный указатель
Рейтинг: | 4.8 баллов / 2537 оценок |
Формат: | Книга |
Уже скачали: | 12792 раз |
Нам показалось, что Книги ниже Вас заинтересуют не меньше. Эти издания Вы так же можете скачивать и читать совершенно бесплатно на сайте!
Марк Леви Издательство: Иностранка Год издания: 2010 Страниц: 336 ISBN: 978-5-389-00802-1 Язык: русский Формат: RTF Размер: 5,07 Мб Филип и Сьюзен привязались друг к другу с детства, казал . . .
Анатолий Гладилин Издательство: Нигде Не Купишь Год издания: 2010 Страниц: - Язык: русский Формат: MP3, WMA Размер: 518 Mb Новая книга Анатолия Гладилина - это взгляд на современное француз . . .
Виктор Курочкин Издательство: Нигде не купишь Год издания: 2008 Страниц: 1 Язык: русский Формат: MP3, WMA Размер: 215 Mb Произведения В. Курочкина – одни из самых искренних и пронзительных . . .
Коллектив Издательство: Dennis Publishing Inc. Год издания: 2011 Страниц: 108 Язык: английский Формат: PDF Размер: 46.1 Мб Maxim - мужской журнал о гаджетах, спорте, развлечениях, сексе и ж . . .
Год издания: 2009 Страниц: 68 Язык: английский Формат: JPG Размер: 10,64 Мб Журнал по вязанию крючком. Женская и мужская одежда и аксессуары. depositfiles.com ifolder.ru . . .
Год издания: 2001 Страниц: 50 Язык: другой Формат: JPG Размер: 17.24 Мб Журнал по вязанию спицами и крючком. Женские пуловеры, жакеты, топы, сумки, платье. depositfiles.com ifolder.ru . . .
Кикоин И.К. Издательство: Атомиздат Год издания: 1976 Страниц: 1008 Язык: русский Формат: DJVU Размер: 25,4 Мб Справочник содержит данные по механическим, термодинамическим и молекулярно-ки . . .
Хорни К. Страниц: 400 Язык: русский Формат: DOC Размер: 1 Мб Карен Хорни – автор многих популярных книг. Ввела понятие невротической потребности в любви – то есть, преувеличенной потребности . . .
Наталья Мирошниченко Год издания: 2007 Страниц: много Язык: русский Формат: Видео Размер: 416 Мб В легкой, непринужденной форме психолог рассказывает о продуктивном общении с вашим ребенком. . . .
Газарян С.С. Издательство: Детская литература Год издания: 1987 Страниц: 432 Язык: русский Формат: PDF Размер: 10,3 Mб В книге рассказывается о возникновении и развитии народных художествен . . .
Если вы хотите скачивать книги, журналы и аудиокниги бесплатно, без рекламы и без смс, оставлять комментарии и отзывы, учавствовать в различных интересных мероприятиях, получать скидки в книжных магазинах и многое другое, то Вам необходимо зарегистрироваться в нашей Электронной Библиотеке.
К сожалению, в нашей Бесплатной Библиотеке пока нет отзывов о Книге Основы математики и ее приложения в экономическом образовании, Красс М.С., Чупрынов Б.П., 2003. Помогите нам и другим читателям окунуться в сюжет Книги и узнать Ваше мнение. Оставьте свой отзыв или обзор сейчас, это займет у Вас всего-лишь несколько минут.