Математика, Уравненения и неравенства с параметром, Часть 1, Беляева Э.С., Потапов А.С., Титоренко С.А., 2009.
Учебный комплект (сборник задач в двух частях) в полном объеме раскрывает тему "Уравнения и неравенства с параметром ". В части 1 разбираются линейные, квадратные и тригонометрические уравнения с параметром. Детально рассмотрен широкий спектр задач разных уровней сложности, доступно и наглядно изложены методы решения. Комплект станет незаменимым помощником не только для учеников, но и для учителей.
Для учащихся старших классов, преподавателей математики, абитуриентов, студентов математических специальностей.
Пример.
Под областью определения уравнения f(x; а) = 0с параметром а будем понимать все такие системы значений х и а, при которых f(x; а) имеет смысл.
Заметим, что иногда область определения уравнения устанавливается довольно легко, а иногда в явном виде это сделать трудно. Тогда ограничиваемся только системой неравенств, множество решений которой и является областью определения уравнения. Этого бывает, как правило, достаточно для решения уравнения.
Решить уравнение f(х; а) = 0 с параметром а — это значит для каждого действительного значения а найти все решения данного уравнения или установить, что их нет.
Договоримся все значения параметра а, при которых f(x; а) не имеет смысла, включать в число значений параметра, при которых уравнение не имеет решений.
Оглавление
Предисловие 3
О работе с мультимедийным приложением к книге 6
Основные понятия 8
Раздел I. Линейные уравнения и неравенства с параметром и к ним сводимые 14
1. Линейные уравнения с параметром и к ним сводимые 14
1.1. Уравнения первой степени с параметром (без «ветвлений») 16
1.2. Простейшие линейные уравнения с параметром (с «ветвлениями») 24
1.3. Дробно-рациональные уравнения с параметром 29
1.4. Более сложные дробно-рациональные уравнения с параметром, сводимые к линейным 35
1.5. Уравнения с дополнительными условиями 38
1.6. Уравнения, содержащие переменную под знаком модуля 43
2. Линейные неравенства с параметром и к ним сводимые 61
2.1. Подготовительные неравенства и их системы 61
2.2. Простейшие линейные неравенства с параметром 73
2.3. Дробно-рациональные неравенства с параметром 82
2.4. Неравенства, содержащие переменную под знаком модуля 91
Раздел II. Квадратные уравнения и неравенства с параметром и к ним сводимые 106
1. Справочный материал 106
1.1. Квадратные уравнения 106
1.2. Квадратичная функция 109
1.3. Расположение корней квадратного трехчлена относительно заданных точек 110
2. Квадратные уравнения с параметром и к ним сводимые 113
2.1. Неполные квадратные уравнения с параметром 113
2.2. Приведенные квадратные уравнения с параметром 121
2.3. Квадратные уравнения с параметром 133
2.4. Уравнения с дополнительными условиями 141
2.5. Дробно-рациональные уравнения с параметром, сводимые к квадратным уравнениям 159
2.5.1. Подготовительные уравнения 159
2.5.2. Дробно-рациональные уравнения с параметром, сводимые к квадратным уравнениям 172
2.6. Более сложные квадратные уравнения и их системы с параметром и к ним сводимые 181
3. Квадратные неравенства с параметром и к ним сводимые 210
3.1. Подготовительные неравенства и их системы 210
3.2. Квадратные неравенства с параметром и к ним сводимые. Системы неравенств 221
3.3. Более сложные квадратные неравенства и их системы с параметром 246
Раздел III. Тригонометрические уравнения и неравенства с параметром 286
1. Единичная (тригонометрическая) окружность 286
1.1. Понятие единичной (тригонометрической) окружности 289
1.2. Запись чисел, соответствующих точкам единичной окружности 291
1.3. Запись множества корней наиболее рациональным образом. 296
2. Некоторые сведения из тригонометрии 302
2.1. Синус, косинус, тангенс и котангенс действительного числа 302
2.2. Обратные тригонометрические функции 305
2.2.1. Определения, свойства и графики обратных тригонометрических функций 306
2.2.2. Нахождение значения прямой тригонометрической функции от значения обратной, и наоборот 310
2.2.3. Тождества с обратными тригонометрическими функциями 319
2.2.4. Уравнения с обратными тригонометрическими функциями 321
2.3. Решение простейших тригонометрических уравнений 326
2.4. Таблица «опасных» формул 330
2.5. Решение простейших тригонометрических неравенств 333
3. Метод «лепестков» в решении тригонометрических уравнений и неравенств 346
4. Основные приемы решения тригонометрических уравнений и неравенств с параметром 365
4.1. Простейшие тригонометрические уравнения с параметром и к ним сводимые 365
4.2. Тригонометрические уравнения и системы с параметром 393
4.3. Тригонометрические неравенства с параметром 431
Литература 466
Приложение 469.
Рейтинг: | 4.8 баллов / 2537 оценок |
Формат: | Книга |
Уже скачали: | 12756 раз |
Нам показалось, что Книги ниже Вас заинтересуют не меньше. Эти издания Вы так же можете скачивать и читать совершенно бесплатно на сайте!
Название: ОчищениеАвтор: Виктор СуворовИздательство: АСТISBN: 5-17-009254-7Год издания: 2003Страниц: 153Язык: РусскийФормат: doc, rtf, pdf, htm, mdi, xml,Размер: 10,8 МбОписание:Зачем Сталин обезгла . . .
Название: Su-25 Frogfoot (Aircraft Number 129)Серия или выпуск: in actionИздательство: Squadron/Signal PublicationsГод издания: 1992Страниц: 51Язык: АнглийскийФормат: pdfКачество: хорошееРазмер: 11.6 . . .
Название: Гражданская война в ИспанииАвтор: С. Ю. ДаниловИздательство: ВечеISBN: 5-9533-0225-8Год издания: 2004Страниц: 352Язык: РусскийФормат: fb2Размер: 1.25 МбОписание: Многие из событий 1930-х г . . .
Автор:Ардашев А. Н., Федосеев С. Л.Название: Оружие специальное, необычное, экзотическое. Иллюстрированный справочникИздательство: АСТ, АстрельГод: 2003Формат: djvuРазмер: 5,5 МбВ книге в популярной ф . . .
Автор:Народный Комиссариат Военно-Морского Флота Союза ССР. Управление связиНазвание: Сигнальное дело. Учебник для подготовки сигнальщиков РКВМФ.Издательство: Военмориздат НКВМФ СССРГод: 1939Формат: d . . .
Автор:А.А.Кондратович,Г.Г.Пиянзов Название: Противоминное оружиеИздательство: Воениздат Год: 1989Формат: DjVu Размер: 17,2 Мб Книга содержит сведения о развитии и современном состоянии противоминного . . .
Название: Олигархи в черных мундирахАвтор: Альберт НемчиновИздательство: ЯузаISBN: 5-87849-180-ХГод издания: 2005Страниц: 352Язык: РусскийФормат: rtfРазмер: 1.79 МбОписание:Где достать деньги? - пожал . . .
Название: Великий танковый грабеж. Трофейная броня ГитлераАвтор: Энтони Такер-ДжонсИздательство: Яуза, ЭксмоISBN: 978-5-699-28993-6Год издания: 2008Страниц: 336Язык: РусскийФормат: docРазмер: 2.12 МбО . . .
Автор: Максим Попенкер Название: Штурмовые винтовки мираИздательство: АСТГод: 2007Формат: pdfРазмер: 6,29 mbВ книге даётся обзор развития штурмовых винтовок и боеприпасов для них, а также анализируют . . .
Издательство: FRANK CASS & RoutledgeАвтор(ы): John BuckleyЯзык: EnglishГод издания: 2004Количество страниц: 304ISBN: 0-203-49498-9Формат: pdf OCR HQРазмер: 2.53 mbRapidIfolder . . .
Если вы хотите скачивать книги, журналы и аудиокниги бесплатно, без рекламы и без смс, оставлять комментарии и отзывы, учавствовать в различных интересных мероприятиях, получать скидки в книжных магазинах и многое другое, то Вам необходимо зарегистрироваться в нашей Электронной Библиотеке.
К сожалению, в нашей Бесплатной Библиотеке пока нет отзывов о Книге Математика, Уравненения и неравенства с параметром, Часть 1, Беляева Э.С., Потапов А.С., Титоренко С.А., 2009. Помогите нам и другим читателям окунуться в сюжет Книги и узнать Ваше мнение. Оставьте свой отзыв или обзор сейчас, это займет у Вас всего-лишь несколько минут.