Математика, Нестандартные методы решения неравенств и их систем, Коропец З.Л., Коропец А.А., Алексеева Т.А., 2012


Книга Математика, Нестандартные методы решения неравенств и их систем, Коропец З.Л., Коропец А.А., Алексеева Т.А., 2012

Математика, Нестандартные методы решения неравенств и их систем, Коропец З.Л., Коропец А.А., Алексеева Т.А., 2012.
  Книга продолжает серию учебных пособий авторов «Математика абитуриенту» и посвящена современным нестандартным методам решения сложных неравенств, основанным на концепции равносильности математических высказывании.
Существенным отличием данной работы от имеющихся подобных изданий является то, что в ней представлено системное изложение методов и алгоритмов, позволяющих с помощью условий равносильности сводить решение целых классов сложных неравенств к решению простых рациональных неравенств классическим методом интервалов.

МЕТОД ЗАМЕНЫ МНОЖИТЕЛЯ (МЗМ).
Решение неравенств повышенной сложности, содержащих модули, иррациональные, логарифмические, показательные функции или их комбинацию, стандартными школьными методами часто оказывается весьма сложным и громоздким, что вызывает у школьников определенные трудности.
Одним из эффективных и доступных методов решения таких неравенств и их систем является метод замены множителя (МЗМ) [1. 2, 8. 9], базирующийся на концепции равносильности математических высказываний и реализуемый в виде логических схем (алгоритмов) рационализации и алгебраизации, то есть замены иррациональных и трансендентных неравенств на равносильные им рациональные алгебраические неравенства. Решение последних легко осуществляется методом интервалов для рациональных функций.
СОДЕРЖАНИЕ
Введение 5
Некоторые обозначения 7
1. Метод замены множителя (МЗМ) 8
1.1. Понятие равносильности 9
1.2. Принцип монотонности для неравенств 10
1.3. Теорема о корне 10
2. Неравенства, содержащие модули 11
2.1. Условия равносильности для МЗМ 11
2.2. Примеры с решениями 11
2.3. Примеры для самостоятельного решения 20
Ответы 21
3. Иррациональные неравенства 22
3.1. Условия равносильности для МЗМ 22
3.2. Примеры с решениями 22
3.3. Примеры для самостоятельного решения 39
Ответы 41
4. Показательные неравенства 42
4.1. Условия равносильности для МЗМ 42
4.2. Примеры с решениями 43
4.3. Примеры для самостоятельного решения 54
Ответы 55
5. Логарифмические неравенства 56
5.1. Условия равносильности для МЗМ 56
5.2. Примеры с решениями 57
5.3. Примеры для самостоятельного решения 74
Ответы 76
6. Показательные неравенства с переменным основанием 77
6.1. Условия равносильности для МЗМ 77
6.2. Примеры с решениями 78
6.3. Примеры для самостоятельного решения 85
Ответы 86
7. Логарифмические неравенства с переменным основанием 87
7.1. Условия равносильности для МЗМ 87
7.2. Примеры с решениями 88
7.3. Примеры для самостоятельного решения 101
Ответы 103
8. Использование свойств функций при решении неравенств 105
8.1. Использование области определения функций 105
8.2. Использование ограниченности функций 105
8.2.1. Использование неотрицательности функций 105
8.2.2. Метод мини-максов (метод оценки) 107
8.3. Использование монотонности функций 110
8.4. Примеры для самостоятельного решения 113
Ответы 114
9. Системы неравенств 115
9.1. Примеры с решениями 115
9.2. Примеры для самостоятельного решения 123
Ответы 124
Литература 125.

Рейтинг: 4.8 баллов / 2537 оценок
Формат: Книга
Уже скачали: 12779 раз



Похожие Книги

Нам показалось, что Книги ниже Вас заинтересуют не меньше. Эти издания Вы так же можете скачивать и читать совершенно бесплатно на сайте!


Вы не зарегистрированы!

Если вы хотите скачивать книги, журналы и аудиокниги бесплатно, без рекламы и без смс, оставлять комментарии и отзывы, учавствовать в различных интересных мероприятиях, получать скидки в книжных магазинах и многое другое, то Вам необходимо зарегистрироваться в нашей Электронной Библиотеке.

Отзывы читателей


Ой!

К сожалению, в нашей Бесплатной Библиотеке пока нет отзывов о Книге Математика, Нестандартные методы решения неравенств и их систем, Коропец З.Л., Коропец А.А., Алексеева Т.А., 2012. Помогите нам и другим читателям окунуться в сюжет Книги и узнать Ваше мнение. Оставьте свой отзыв или обзор сейчас, это займет у Вас всего-лишь несколько минут.