Математика, алгебра и начала математического анализа, геометрия. Алгебра и начала математического анализа, 11 класс, учебник для учащихся общеобразовательных организаций (углублённый уровень), Виленкин Н.Я., Ивашев-Мусатов О.С., Шварцбурд С.И., 2014


Книга Математика, алгебра и начала математического анализа, геометрия. Алгебра и начала математического анализа, 11 класс, учебник для учащихся общеобразовательных организаций (углублённый уровень), Виленкин Н.Я., Ивашев-Мусатов О.С., Шварцбурд С.И., 2014

Математика, алгебра и начала математического анализа, геометрия. Алгебра и начала математического анализа, 11 класс, учебник для учащихся общеобразовательных организаций (углублённый уровень), Виленкин Н.Я., Ивашев-Мусатов О.С., Шварцбурд С.И., 2014.
Учебник соответствует требованиям ФГОС среднего общего образования. В книге выделены типовые задачи для подготовки учащихся к Единому государственному экзамену, предложены алгоритмы их выполнения и варианты заданий для самоконтроля. В учебнике реализованы современные подходы к формированию проектно-исследовательских умений и ИКТ-компетенций. Темы индивидуальных проектов, предложенные в учебнике, входят в базовое академическое образование по экономике.
§ 1. Неопределённый интеграл.
1. Введение. С помощью дифференцирования можно, зная закон движения тела, найти его мгновенную скорость в любой момент времени. Часто возникает необходимость в решении обратной задачи: зная скорость прямолинейно движущегося тела в каждый момент времени, найти закон движения тела. Эти и аналогичные им задачи решаются с помощью операции интегрирования функций, которая обратна операции дифференцирования.
Раздел математики, в котором изучаются свойства операции интегрирования и её приложения к решению задач физики и геометрии, называют интегральным исчислением.
Напомним выведенные в главах 5 и 6 формулы для производных и вытекающие из них формулы для дифференциалов:

ОГЛАВЛЕНИЕ
Предисловие.  
Глава 1. Интеграл и дифференциальные уравнения
§ 1. Неопределённый интеграл.
1. Введение (5). 2. Первообразная (5). 3. Непосредственное интегрирование (9). 4. Замена переменкой (10).
§ 2. Дифференциальные уравнения.
1. Введение (13) 2. Решения дифференциальных уравнений (16). 3. Уравнения с разделяющимися переменными (21). 4. Составление дифференциальных уравнений (24). 5. Математическое моделирование (беседа) (27).
§ 3. Определённый интеграл.
1. Площади плоских фигур (28). 2. Площадь криволинейной трапеции (31).
3. Теорема Ньютона — Лейбница (33). 4. Физические и геометрические задачи, приводящие к понятию определённого интеграла (36). 5. Вычисление геометрических и физических величин с помощью определённого интеграла (43). 6. Свойства определённого интеграла (47). 7. Оценка значения определённого интеграла (50).
Глава 2. Показательная, логарифмическая и степенная функции
§ 1. Показательная функция и её свойства.
1. Процессы органического роста и убывания (55). 2. Обобщение понятия степени (57). 3. Определение функции Inx, её свойства и график (60).
4. Логарифмическая функция и степень с любым показателем (63).
5. Показательная функция, её свойства и график (68).
§ 2. Показательные и логарифмические уравнения и неравенства.
1. Простейшие показательные уравнения и неравенства (70). 2. Решение показательных уравнений и неравенств (72). 3. Простейшие логарифмические уравнения и неравенства (74). 4. Решение логарифмических уравнений и неравенств (76).
§ 3. Дифференцирование и интегрирование показательной и логарифмической функций.
1. Логарифмическое дифференцирование (81). 2. Дифференцирование показательной функции (87). 3. Дифференциальное уравнение процессов органического изменения (89). 4. Некоторые пределы, связанные с числом е (93). 5*. Некоторые неравенства для показательной функции (94). 6*. Неравенства для логарифмической функции (96).
§ 4. Степенная функция. Иррациональные выражения, уравнения и неравенства.
1. Степенная функция с произвольным показателем (99). 2. Некоторые тождества для степенной функции (102). 3. Сравнение роста степенной, показательной и логарифмической функций (104). 4. Алгебраические выражения (105). 5. Упрощение иррациональных выражений (109). 6. Уничтожение иррациональности в знаменателе или в числителе (112). 7. Иррациональные уравнения (113). 8. Иррациональные неравенства (118).
§ 5. Метод последовательных приближений.
1. Приближённое решение уравнений (120). 2. Метод последовательных приближений (121).
§ 6. Уравнения и неравенства с параметрами.
1. Рациональные уравнения и неравенства с параметрами (124).
2. Иррациональные уравнения и неравенства с параметрами (128).
3. Трансцендентные уравнения и неравенства с параметрами (132).
Глава 3. Многочлены от нескольких переменных. Системы уравнений и неравенств
§ 1. Многочлены от нескольких переменных.
1. Стандартный вид многочлена от нескольких переменных (139).
2. Симметрические многочлены (142). 3. Доказательство неравенстве несколькими переменными (146).
§ 2. Системы уравнений и неравенств.
1. Геометрический смысл одного уравнения с двумя переменными (149).
2. Системы и совокупности уравнений (151). 3. Равносильные системы уравнений (157). 4. Метод исключения (160). 5. Метод алгебраического сложения уравнений (161). 6*. Метод замены переменных. Системы
симметрических уравнений (163). 7. Графическое решение системы уравнений (169). 8. Системы иррациональных, тригонометрических, показательных и логарифмических уравнений (173). 9. Решение неравенств с двумя переменными (177).
Глава 4. Комплексные числа и операции над ними
§ 1. Комплексные числа в алгебраической форме.
1. Введение (186). 2. Определение комплексных чисел и операций над ними (188). 3. Сопряжённые комплексные числа (192). 4. Извлечение квадратных корней из комплексных чисел и решение квадратных уравнений с комплексными коэффициентами (194).
§ 2. Тригонометрическая форма комплексных чисел.
1. Геометрическое изображение комплексных чисел (197). 2. Полярная система координат и тригонометрическая форма комплексных чисел (198). 3. Умножение, возведение в степень и деление комплексных чисел в тригонометрической форме (203). 4. Формула Муавра. Применения комплексных чисел к доказательству тригонометрических тождеств (205). 5. Извлечение корня из комплексного числа (206). 6. Основная теорема алгебры многочленов (211). 7. Комплексные числа и геометрические преобразования. Функции комплексного переменного (214).
Глава 5. Элементы комбинаторики
§ 1. Множества, кортежи, отображения.
1. Множества и операции над ними (217). 2. Алгебра множеств (220). 3. Разбиение множества на подмножества (222). 4. Кортежи и декартово произведение множеств (223). 5. Отображение множеств (225).
§ 2. Основные законы комбинаторики.
1. Введение (229). 2. Правило суммы (231). 3. Правило произведения (234).
§ 3. Основные формулы комбинаторики.
1. Размещения с повторениями (236). 2. Размещения без повторений (238). 3. Перестановки без повторений (240). 4. Сочетания без повторений (241). 5. Сочетания и биномиальные коэффициенты (243). 6. Перестановки с повторениями (245). 7. Сочетания с повторениями (248).
Глава 6. Элементы теории вероятностей
§ 1. Вычисление вероятностей.
1. Введение (253). 2. Вероятностное пространство (254). 3. Вероятность событий (258). 4. Алгебра событий (264). 5. Теоремы сложения (270).
§ 2. Независимые испытания.
1. Независимые случайные события (273). 2. Условная вероятность. Фор-
мула умножения (277). 3. Формула Бернулли. Закон больших чисел (283). 4. Геометрические вероятности (286).
Приложение.
Ответы.
Предметный указатель.

Рейтинг: 4.8 баллов / 2537 оценок
Формат: Книга
Уже скачали: 12752 раз



Похожие Книги

Нам показалось, что Книги ниже Вас заинтересуют не меньше. Эти издания Вы так же можете скачивать и читать совершенно бесплатно на сайте!

  • Книга Гидравлика судовых систем

    Гидравлика судовых систем

    Название: Гидравлика судовых системАвтор: Золотов С.С.Издательство: СудостроениеГод: 1970Формат: pdfРазмер: 12 мбCтраниц: 240Язык: русскийИзложены методы и основные результаты исследований гидравличес . . .

  • Книга A Victorian Flower Dictionary: The Language of Flowers Companion

    A Victorian Flower Dictionary: The Language of Flowers Companion

    Автор: Mandy KirkbyНазвание: A Victorian Flower Dictionary: The Language of Flowers CompanionИздательство: Ballantine BooksISBN: 0345532864Год: 2011Формат: EPUBРазмер: 5.22 mbСтраниц: 187Язык: Ehglish . . .

  • Аудиокнига Collins English Readers: After the Funeral

    Collins English Readers: After the Funeral

    Автор: Agatha ChristieНазвание: After the Funeral (Book & Audio)Серия: Collins English Readers: CEF level B2Издательство: Harper CollinsГод выпуска: 2012Формат: pdf, fb2, mobi, mp3Страниц: 122Bitrate . . .

  • Аудиокнига Дальше ваш билет недействителен (Аудиокнига)

    Дальше ваш билет недействителен (Аудиокнига)

    Название: Дальше ваш билет недействителенАвтор: Ромен ГариЖанр: роман, прозаИздательство: Нигде не купишьГод выхода: 2014Тип: аудиокнигаЧитает: Винокурова Надежда; Кирсанов СергейЯзык: русскийВремя зв . . .

  • Книга Детали машин

    Детали машин

    Название: Детали машинАвтор: Кудрявцев В.Н.Издательство: МашиностроениеГод: 1980Формат: djvuРазмер: 54 мбCтраниц: 464Язык: русскийСодержание учебника, написанного по про-грамме курса «Детали машин» дл . . .

  • Книга Арматура систем автоматического управления

    Арматура систем автоматического управления

    Название: Арматура систем автоматического управленияАвтор: Казинер Ю.Я., Слободкин М.С.Издательство: МашиностроениеГод: 1977Формат: djvuРазмер: 3 мбCтраниц: 137Язык: русскийВ книге рассмотрены вопросы . . .

  • Книга Оборудование целлюлозно-бумажного производства (в 2-х томах)

    Оборудование целлюлозно-бумажного производства (в 2-х томах)

    Название: Оборудование целлюлозно-бумажного производства (в 2-х томах)Автор: В.А.Чичаев, М.Л.Глезии, В.А.Екимова, М.В.Ильинский, А.Д.Лихтер, М.Д.Лотвииов, В.М.Пестриков, А.И.Подковырин, В.Б.Фейгин, Г. . . .

  • Книга Жизнь и удивительные приключения Робинзона Крузо

    Жизнь и удивительные приключения Робинзона Крузо

    Название: Жизнь и удивительные приключения Робинзона КрузоАвтор книги: Дефо ДаниельИздательство: СП "Квадрат"Год выпуска: 1992Формат: PDF/RAR+3%Страниц: 432Язык: русскийКачество: высокоеРазмер: 257 Mb . . .

  • Книга Крылатая легенда. Самолеты Ан-2 и Ан-3. 60-летию первого полета Ан-2 посвящается

    Крылатая легенда. Самолеты Ан-2 и Ан-3. 60-летию первого полета Ан-2 посвящается

    Название: Крылатая легенда. Самолеты Ан-2 и Ан-3. 60-летию первого полета Ан-2 посвящаетсяАвтор(ы): Виктор АнисенкоИздательство: АэроХоббиГод: 2007ISBN: 978-966-2942-02-6Страниц: 200Язык: РусскийФорма . . .

  • Книга Запретный камень

    Запретный камень

    Название: Тони Эбботт. Запретный каменьАвтор: Тони ЭбботтИздательство: АСТ; Москва; Год: 2014Язык: РусскийISBN: 978-5-17-086384-6Жанр: ФантастикаФормат: fb2Размер: 1.49 MB. Когда Вейд Каплан получа . . .


Вы не зарегистрированы!

Если вы хотите скачивать книги, журналы и аудиокниги бесплатно, без рекламы и без смс, оставлять комментарии и отзывы, учавствовать в различных интересных мероприятиях, получать скидки в книжных магазинах и многое другое, то Вам необходимо зарегистрироваться в нашей Электронной Библиотеке.

Отзывы читателей


Ой!

К сожалению, в нашей Бесплатной Библиотеке пока нет отзывов о Книге Математика, алгебра и начала математического анализа, геометрия. Алгебра и начала математического анализа, 11 класс, учебник для учащихся общеобразовательных организаций (углублённый уровень), Виленкин Н.Я., Ивашев-Мусатов О.С., Шварцбурд С.И., 2014. Помогите нам и другим читателям окунуться в сюжет Книги и узнать Ваше мнение. Оставьте свой отзыв или обзор сейчас, это займет у Вас всего-лишь несколько минут.