Математика, алгебра и начала математического анализа, геометрия. Алгебра и начала математического анализа, 10 класс, учебник для учащихся общеобразовательных организаций (углублённый уровень), Виленкин Н.Я., Ивашев-Мусатов О.С., Шварцбурд С.И., 2014.
Учебник соответствует требованиям Федерального государственного стандарта среднего образования и предназначен для изучения курса алгебры и начал математического анализа в 10-м классе на углублённом уровне.
В учебнике выделены типовые задачи для полготовки учащихся к Единому государственному экзамену, предложены алгоритмы их выполнения и варианты заданий для самоконтроля, реализованы современные подходы к формированию проектно-исследовательских умений и ИКТ-компетенций. Темы индивидуальных проектов, предложенные в учебнике, входят в базовое академическое образование по экономике.
Фрагмент из книги:
3. Числовые множества и операции над ними. Любую совокупность действительных чисел называют числовым множеством. Само множество действительных чисел обозначают буквой R.
Другими примерами числовых множеств могут служить:
а) множество R, положительных действительных чисел;
б) множество R отрицательных действительных чисел;
в) множество Q, положительных рациональных чисел;
г) множество Q отрицательных рациональных чисел;
д) множество Q рациональных чисел;
е) множество Z целых чисел;
ж) множество N натуральных чисел;
ОГЛАВЛЕНИЕ
Предисловие.
Глава 1. Числа и координаты
§ 1. Действительные числа .
1. Действительные числа и бесконечные десятичные дроби (5).
2. Рациональные и иррациональные числа (9). 3. Числовые множества и операции над ними (11). 4. Разделяющее число числовых множеств (14). 5. Арифметические операции над действительными числами (16). 6. Обращение периодических десятичных дробей в обыкновенные (20). 7. Степени с натуральными показателями и их свойства (21).
§ 2. Координаты на прямой и на плоскости.
1. Величина направленного отрезка (22). 2. Координаты на прямой линии (24). 3. Координатная плоскость (27).
Глава 2. Рациональные выражения. Уравнения и неравенства с одной переменной
§ 1. Рациональные выражения.
1. Выражения и классы выражений (31). 2. Тождественные преобразования целых рациональных выражений (36).
§ 2. Метод математической индукции.
1. Полная и неполная индукция (37). 2. Метод математической индукции (40). 3. Доказательство тождеств и неравенств с помощью математической индукции (44).
§ 3. Многочлены от одной переменной.
1, Канонический вид целых рациональных выражений (47). 2. Деление многочлена с остатком (51). 3. Теорема Безу. Корни многочлена (54). 4. Тождественное равенство рациональных выражений (57). 5. Каноническая форма рациональных выражений (59).
§ 4. Рациональные уравнения и неравенства с одной переменной.
1. Уравнения, тождества, неравенства (60). 2. Равносильные уравнения и неравенства (61). 3. Основные методы решения уравнений (65). 4. Решение неравенств (69). 5. Доказательство неравенств (73). 6. Отыскание рациональных корней уравнений с целыми коэффициентами (74). 7. Уравнения и неравенства, содержащие знак модуля (78).
Глава 3. Функции и последовательности
§ 1. Числовые функции и способы их задания.
1. Введение (81). 2. Числовые функции (82). 3. Кусочное задание функций (86). 4. График функции (89). 5. Операции над функциями. Композиция функций (93). 6. Числовые последовательности и способы их задания (95).
§ 2. Преобразования графиков .
1. Координатное задание геометрических преобразований (98).
2. Преобразования графиков функций (101). 3. График линейной функции (104). 4. График квадратической функции (108). 5. График дробно-линейной функции (110). 6. Построение графиков функций, выражение которых содержит знак модуля (112).
§ 3. Элементарное исследование функций.
1. Четные и нечетные функции (114). 2. Возрастание и убывание функций (117).
Глава 4. Предел и непрерывность
§ 1. Предел функции на бесконечности.
1. Бесконечно малые функции (122). 2. Операции над бесконечно малыми функциями (125). 3. Предел функции на бесконечности (128). 4. Свойства предела функции при х —* +оо (132). 5. Вычисление пределов (133). 6. Бесконечно большие функции (137). 7. Наклонные асимптоты (140). 8. Необходимое и достаточное условие существования предела монотонной функции (141). 9. Предел последовательности (141). 10*. Вычисление пределов рекуррентно заданных последовательностей (144).
§ 2. Предел функции в точке. Непрерывные и разрывные функции.
1. Окрестность точки (147). 2. Предел функции в точке (149). 3. Свойства предела функции в точке и вычисление пределов (150). 4. Функции, бесконечно большие при х -» а; вертикальные асимптоты (154). 5. Непрерывные функции (155). 6. Теоремы о промежуточных значениях функций, непрерывных на отрезке (159). 7. Обратная функция (162). 8. Корни (164).
Глава 5. Производная и ее приложения
§ 1. Производная.
1. Приращение функции (168). 2. Дифференцируемые функции (171). 3. Производная (172). 4. Дифференциал функции (175). 5. Производная и скорость (177). 6. Касательная прямая к графику функции и ее уравнение (178). 7. Непрерывность и дифференциру-емость (181). § 2. Техника дифференцирования.
1. Дифференцирование линейной комбинации функций (183).
2. Дифференцирование степени функции и произведения функций (186).
3. Дифференцирование дроби (189). 4. Вторая производная (190).
§ 3. Приложения производной.
1. Производная и экстремумы (192). 2. Отыскание наибольших и наименьших значений функции на отрезке (195). 3. Теорема Лагранжа и ее следствия (203). 4. Исследование функций на возрастание и убывание. Достаточное условие экстремума (205). 5. Исследование графиков на выпуклость (207). 6. Точки перегиба (209). 7. Построение графиков функций (211). 8. Производные и доказательство неравенств (217). 9. Бином Ньютона (219). 10. Некоторые свойства биномиальных коэффициентов (222). 11. Приложения бинома Ньютона для приближенных вычислений (223). 12. Приближенное решение уравнений методом хорд и касательных (224).
Глава 6. Тригонометрические функции
§ 1. Координатная окружность.
1. Длина дуги окружности (229). 2. Свойства длины дуги (231). 3. Ради-анное измерение дуг и углов (232). 4. Координатная окружность (234).
§ 2. Тригонометрические функции числового аргумента, их свойства и графики.
1. Функции синус и косинус числового аргумента (237).
2. Периодические процессы и функции (241). 3. Некоторые свойства синуса и косинуса (243). 4. Знаки синуса и косинуса и промежутки монотонности (247). 5. Непрерывность синуса и косинуса (251). 6. Синусоида и косинусоида (252). 7. Гармонические колебания и их графики (254). 8. Тангенс и котангенс числового аргумента (257). 9. Тангенсоида и котангенсоида (263).
§ 3. Формулы сложения и их следствия.
1. Косинус и синус разности и суммы двух чисел (265).
2. Тангенс и котангенс суммы и разности (268). 3. Формулы приведения (270). 4. Тригонометрические функции двойного и тройного аргумента (273). 5. Тригонометрические функции половинного аргумента (276). 6. Преобразования суммы тригонометрических функций в произведение и произведения этих функций в сумму (278).
7. Сложение гармонических колебаний (283).
§ 4. Дифференцирование тригонометрических функций.
1. Предел отношения длины хорды к длине стягиваемой ею дуги (285). 2. Производные тригонометрических функций (288). 3. Дифференцирование композиции функций (291). § 5. Тригонометрические уравнения и неравенства.
1. Решение уравнений вида sin ( = m. Арксинус (294). 2. Решение уравнений вида cos t = m. Арккосинус (298). 3. Решение уравнений вида tg t = т. Арктангенс (302). 4. Основные методы решения тригонометрических уравнений (304). 5. Частные способы решения тригонометрических уравнений (309). 6. Универсальная подстановка (312). 7. Использование формул для кратных углов при решении тригонометрических уравнений (314). 8. Доказательство тригонометрических неравенств (315). 9. Решение простейших тригонометрических неравенств (317). 10. Решение тригонометрических неравенств (320). 11*. Некоторые неравенства для тригонометрических функций (323).
§ 6. Обратные тригонометрические функции.
1. Определение, свойства и графики обратных тригонометрических функций (325). 2. Вычисление пределов, связанных с обратными тригонометрическими функциями (327). 3. Дифференцирование обратных тригонометрических функций (328). 4. Некоторые тождества для обратных тригонометрических функций (331). 5. Уравнения и неравенства, содержащие обратные тригонометрические функции (332).
Приложение. Варианты контрольных работ.
Примерные темы для исследовательской и проектной деятельности
Ответы.
Предметный указатель.
Рейтинг: | 4.8 баллов / 2537 оценок |
Формат: | Книга |
Уже скачали: | 12747 раз |
Нам показалось, что Книги ниже Вас заинтересуют не меньше. Эти издания Вы так же можете скачивать и читать совершенно бесплатно на сайте!
Название: Превращения гиперболоида инженера ГаринаАвтор: Радунская ИринаИздательство: Молодая гвардияГод издания: 1966Страниц: 288Формат: pdfРазмер: 1.1 МбКнига рассказывает о физиках - творцах лазеро . . .
Автор: Harold JarnickiНазвание: No Boring Practice, Please! Parts of Speech: Reproducible Practice Pages PLUS Easy-to-Score Quizzes That Reinforce the Correct Use of Nouns, Verbs, Adjectives, Adverbs, . . .
Название: Кванты и музыАвтор: Радунская И. Л.Издательство: ОАО "Московские учебники и Картолитография"ISBN: 5-7853-0580-1Год издания: 2006Страниц: 448Формат: pdfРазмер: 4.57 МбЧто сделало возможным та . . .
Название: Революция отвергает своих детейАвтор: Леонгард В.Год: 1984Издательство: Лондон: Overseas Publications Interchange LtdISBN: 0-903868-66-0Формат: PDF Размер: 25 MBСтраниц: 597Язык: РусскийВоль . . .
Название: Сбалансированное питание для беременных и кормящихАвтор: Людмила КирсановаИздательство: ЦентрполиграфГод: 2008Страниц: 160Язык: русскийФормат: pdfРазмер: 2.4 МбВам хочется иметь здорового ре . . .
Автор: Ричардз М. Название: Стресс. Карманный справочник Издательство: М.: HIPPO Год: 2005Страниц: 107 c.Формат: pdf / rar + 3%Размер: 4.11 MbПолный карман советов и методов по управлению прессингом и . . .
Название: German Federal Archives. Messerschmitt, Junkers, Arado, HeinkelИздательство: German Federal ArchivesСтраниц: 246Формат: JPG Размер: 34 МбКачество: ХорошееЯзык: НемецкийФотоальбом из Нем . . .
Название: Сборник фантастики - "Битва" (16 книг)Автор: Олег Авраменко, Вячеслав Кумин, Юрий Никитин и др.Издательство: АСТ, Астрель-СПб, Армада, Альфа-книга, ЛениздатГод: 1994 - 2010 Язык: РусскийФо . . .
Название: Убийство на поле для гольфа (аудиокнига) Автор: Агата Кристи Год издания: 2008 Язык: Русский Формат: MP3 Битрейт аудио: 128 Кбит/c, 44 кГц, моно Время звучания: 16 ч. 10 мин. Читает: Владим . . .
Название: Кройка и шитьеСерия: На все руки мастерицаИздательство: ХарвестГод: 2003Страниц: 160Формат: DjVuРазмер: 8,84 МбЯзык: русскийСодержащиеся в книге рекомендации расскажут о том, как правильно в . . .
Если вы хотите скачивать книги, журналы и аудиокниги бесплатно, без рекламы и без смс, оставлять комментарии и отзывы, учавствовать в различных интересных мероприятиях, получать скидки в книжных магазинах и многое другое, то Вам необходимо зарегистрироваться в нашей Электронной Библиотеке.
К сожалению, в нашей Бесплатной Библиотеке пока нет отзывов о Книге Математика, алгебра и начала математического анализа, геометрия. Алгебра и начала математического анализа, 10 класс, учебник для учащихся общеобразовательных организаций (углублённый уровень), Виленкин Н.Я., Ивашев-Мусатов О.С., Шварцбурд С.И., 2014. Помогите нам и другим читателям окунуться в сюжет Книги и узнать Ваше мнение. Оставьте свой отзыв или обзор сейчас, это займет у Вас всего-лишь несколько минут.