Математика, алгебра и начала математического анализа, геометрия. Алгебра и начала математического анализа, 10 класс, учебник для учащихся общеобразовательных организаций (углублённый уровень), Виленкин Н.Я., Ивашев-Мусатов О.С., Шварцбурд С.И., 2014.
Учебник соответствует требованиям Федерального государственного стандарта среднего образования и предназначен для изучения курса алгебры и начал математического анализа в 10-м классе на углублённом уровне.
В учебнике выделены типовые задачи для полготовки учащихся к Единому государственному экзамену, предложены алгоритмы их выполнения и варианты заданий для самоконтроля, реализованы современные подходы к формированию проектно-исследовательских умений и ИКТ-компетенций. Темы индивидуальных проектов, предложенные в учебнике, входят в базовое академическое образование по экономике.
Фрагмент из книги:
3. Числовые множества и операции над ними. Любую совокупность действительных чисел называют числовым множеством. Само множество действительных чисел обозначают буквой R.
Другими примерами числовых множеств могут служить:
а) множество R, положительных действительных чисел;
б) множество R отрицательных действительных чисел;
в) множество Q, положительных рациональных чисел;
г) множество Q отрицательных рациональных чисел;
д) множество Q рациональных чисел;
е) множество Z целых чисел;
ж) множество N натуральных чисел;
ОГЛАВЛЕНИЕ
Предисловие.
Глава 1. Числа и координаты
§ 1. Действительные числа .
1. Действительные числа и бесконечные десятичные дроби (5).
2. Рациональные и иррациональные числа (9). 3. Числовые множества и операции над ними (11). 4. Разделяющее число числовых множеств (14). 5. Арифметические операции над действительными числами (16). 6. Обращение периодических десятичных дробей в обыкновенные (20). 7. Степени с натуральными показателями и их свойства (21).
§ 2. Координаты на прямой и на плоскости.
1. Величина направленного отрезка (22). 2. Координаты на прямой линии (24). 3. Координатная плоскость (27).
Глава 2. Рациональные выражения. Уравнения и неравенства с одной переменной
§ 1. Рациональные выражения.
1. Выражения и классы выражений (31). 2. Тождественные преобразования целых рациональных выражений (36).
§ 2. Метод математической индукции.
1. Полная и неполная индукция (37). 2. Метод математической индукции (40). 3. Доказательство тождеств и неравенств с помощью математической индукции (44).
§ 3. Многочлены от одной переменной.
1, Канонический вид целых рациональных выражений (47). 2. Деление многочлена с остатком (51). 3. Теорема Безу. Корни многочлена (54). 4. Тождественное равенство рациональных выражений (57). 5. Каноническая форма рациональных выражений (59).
§ 4. Рациональные уравнения и неравенства с одной переменной.
1. Уравнения, тождества, неравенства (60). 2. Равносильные уравнения и неравенства (61). 3. Основные методы решения уравнений (65). 4. Решение неравенств (69). 5. Доказательство неравенств (73). 6. Отыскание рациональных корней уравнений с целыми коэффициентами (74). 7. Уравнения и неравенства, содержащие знак модуля (78).
Глава 3. Функции и последовательности
§ 1. Числовые функции и способы их задания.
1. Введение (81). 2. Числовые функции (82). 3. Кусочное задание функций (86). 4. График функции (89). 5. Операции над функциями. Композиция функций (93). 6. Числовые последовательности и способы их задания (95).
§ 2. Преобразования графиков .
1. Координатное задание геометрических преобразований (98).
2. Преобразования графиков функций (101). 3. График линейной функции (104). 4. График квадратической функции (108). 5. График дробно-линейной функции (110). 6. Построение графиков функций, выражение которых содержит знак модуля (112).
§ 3. Элементарное исследование функций.
1. Четные и нечетные функции (114). 2. Возрастание и убывание функций (117).
Глава 4. Предел и непрерывность
§ 1. Предел функции на бесконечности.
1. Бесконечно малые функции (122). 2. Операции над бесконечно малыми функциями (125). 3. Предел функции на бесконечности (128). 4. Свойства предела функции при х —* +оо (132). 5. Вычисление пределов (133). 6. Бесконечно большие функции (137). 7. Наклонные асимптоты (140). 8. Необходимое и достаточное условие существования предела монотонной функции (141). 9. Предел последовательности (141). 10*. Вычисление пределов рекуррентно заданных последовательностей (144).
§ 2. Предел функции в точке. Непрерывные и разрывные функции.
1. Окрестность точки (147). 2. Предел функции в точке (149). 3. Свойства предела функции в точке и вычисление пределов (150). 4. Функции, бесконечно большие при х -» а; вертикальные асимптоты (154). 5. Непрерывные функции (155). 6. Теоремы о промежуточных значениях функций, непрерывных на отрезке (159). 7. Обратная функция (162). 8. Корни (164).
Глава 5. Производная и ее приложения
§ 1. Производная.
1. Приращение функции (168). 2. Дифференцируемые функции (171). 3. Производная (172). 4. Дифференциал функции (175). 5. Производная и скорость (177). 6. Касательная прямая к графику функции и ее уравнение (178). 7. Непрерывность и дифференциру-емость (181). § 2. Техника дифференцирования.
1. Дифференцирование линейной комбинации функций (183).
2. Дифференцирование степени функции и произведения функций (186).
3. Дифференцирование дроби (189). 4. Вторая производная (190).
§ 3. Приложения производной.
1. Производная и экстремумы (192). 2. Отыскание наибольших и наименьших значений функции на отрезке (195). 3. Теорема Лагранжа и ее следствия (203). 4. Исследование функций на возрастание и убывание. Достаточное условие экстремума (205). 5. Исследование графиков на выпуклость (207). 6. Точки перегиба (209). 7. Построение графиков функций (211). 8. Производные и доказательство неравенств (217). 9. Бином Ньютона (219). 10. Некоторые свойства биномиальных коэффициентов (222). 11. Приложения бинома Ньютона для приближенных вычислений (223). 12. Приближенное решение уравнений методом хорд и касательных (224).
Глава 6. Тригонометрические функции
§ 1. Координатная окружность.
1. Длина дуги окружности (229). 2. Свойства длины дуги (231). 3. Ради-анное измерение дуг и углов (232). 4. Координатная окружность (234).
§ 2. Тригонометрические функции числового аргумента, их свойства и графики.
1. Функции синус и косинус числового аргумента (237).
2. Периодические процессы и функции (241). 3. Некоторые свойства синуса и косинуса (243). 4. Знаки синуса и косинуса и промежутки монотонности (247). 5. Непрерывность синуса и косинуса (251). 6. Синусоида и косинусоида (252). 7. Гармонические колебания и их графики (254). 8. Тангенс и котангенс числового аргумента (257). 9. Тангенсоида и котангенсоида (263).
§ 3. Формулы сложения и их следствия.
1. Косинус и синус разности и суммы двух чисел (265).
2. Тангенс и котангенс суммы и разности (268). 3. Формулы приведения (270). 4. Тригонометрические функции двойного и тройного аргумента (273). 5. Тригонометрические функции половинного аргумента (276). 6. Преобразования суммы тригонометрических функций в произведение и произведения этих функций в сумму (278).
7. Сложение гармонических колебаний (283).
§ 4. Дифференцирование тригонометрических функций.
1. Предел отношения длины хорды к длине стягиваемой ею дуги (285). 2. Производные тригонометрических функций (288). 3. Дифференцирование композиции функций (291). § 5. Тригонометрические уравнения и неравенства.
1. Решение уравнений вида sin ( = m. Арксинус (294). 2. Решение уравнений вида cos t = m. Арккосинус (298). 3. Решение уравнений вида tg t = т. Арктангенс (302). 4. Основные методы решения тригонометрических уравнений (304). 5. Частные способы решения тригонометрических уравнений (309). 6. Универсальная подстановка (312). 7. Использование формул для кратных углов при решении тригонометрических уравнений (314). 8. Доказательство тригонометрических неравенств (315). 9. Решение простейших тригонометрических неравенств (317). 10. Решение тригонометрических неравенств (320). 11*. Некоторые неравенства для тригонометрических функций (323).
§ 6. Обратные тригонометрические функции.
1. Определение, свойства и графики обратных тригонометрических функций (325). 2. Вычисление пределов, связанных с обратными тригонометрическими функциями (327). 3. Дифференцирование обратных тригонометрических функций (328). 4. Некоторые тождества для обратных тригонометрических функций (331). 5. Уравнения и неравенства, содержащие обратные тригонометрические функции (332).
Приложение. Варианты контрольных работ.
Примерные темы для исследовательской и проектной деятельности
Ответы.
Предметный указатель.
Рейтинг: | 4.8 баллов / 2537 оценок |
Формат: | Книга |
Уже скачали: | 12769 раз |
Нам показалось, что Книги ниже Вас заинтересуют не меньше. Эти издания Вы так же можете скачивать и читать совершенно бесплатно на сайте!
Название: Late War U.S. Tanks: The M26 Pershing, M24 Chaffee and M40 Series Автор: David Doyle Язык: Английский Формат: pdf Размер: 42,7 Мб Описание: Extensive photo coverage of these types, detail s . . .
Название: Abrupt Holy Night Автор: manga Страниц: 6 Язык: Русский Формат: jpg Качество: отличное Размер: 5.76 Мб Описание: Подарки разные бывают . . .
Название: Тело человека. Снаружи и внутри №117 Автор: коллектив авторов Серия или выпуск: тело человека Издательство: ДеАгостини Год издания: 2011 Страниц: 24 Язык: Русский Формат: PDF Качество: отл . . .
Название: Woodsmith №25 1983 Автор: Коллектив авторов Выпуск: №25 Год издания: 1983 Страниц: 28 Формат: PDF Качество: норм. Размер файла: 7 Мб Язык: English Woodsmith - журнал, посвященный столярно . . .
Название: Научи меня умирать Автор: Мацуо Монро Издательство: Крылов ISBN: 5-94371-793-5 Год издания: 2005 Язык: Русский Формат: RTF, FB2, RB Размер: 5,51 Мб Описание: Если ты потерял все, чем дорож . . .
Название: 300 модных причесок Автор: Коллекитв Издательство: Алекс софт Год издания: 2006 Страниц: 1000 Язык: Русский Формат: ISO Качество: отличное Размер: 253+251 Мб Описание: Ознакомившись с диск . . .
Название: АТЛАС. Целый мир в твоих руках № 44 2010 Автор: Коллектив авторов Серия или выпуск: АТЛАС. Целый мир в твоих руках Издательство: DeAgostini Год издания: 2010 Страниц: 24 Язык: Русский Форм . . .
Название: P-51 Mustang. Техническое описание и боевое применение Автор: Иванов С.В. Серия или выпуск: Война в воздухе Издательство: ООО "АРС" Год издания: 2001 Страниц: 80 Язык: Русский Формат: pdf . . .
Название: Техника перевода английской специальной литературы Автор: Ж.М. Зенина Издательство: Издательство Казанского университета Год издания: 1971 Страниц: 319 Язык: Русский Формат: DjVu Размер: 2 . . .
Автор:А.А.УхтомскийНазвание: Интуиция совестиИздательство: Петербургский писательГод: 1996Формат: pdfРазмер: 79,5 MbИнтуиция совести: Письма. Записные книжки. Заметки на полях. Алексей Алексеевич Ухто . . .
Если вы хотите скачивать книги, журналы и аудиокниги бесплатно, без рекламы и без смс, оставлять комментарии и отзывы, учавствовать в различных интересных мероприятиях, получать скидки в книжных магазинах и многое другое, то Вам необходимо зарегистрироваться в нашей Электронной Библиотеке.
К сожалению, в нашей Бесплатной Библиотеке пока нет отзывов о Книге Математика, алгебра и начала математического анализа, геометрия. Алгебра и начала математического анализа, 10 класс, учебник для учащихся общеобразовательных организаций (углублённый уровень), Виленкин Н.Я., Ивашев-Мусатов О.С., Шварцбурд С.И., 2014. Помогите нам и другим читателям окунуться в сюжет Книги и узнать Ваше мнение. Оставьте свой отзыв или обзор сейчас, это займет у Вас всего-лишь несколько минут.