LXV Московская математическая олимпиада, 2002


Книга LXV Московская математическая олимпиада, 2002

LXV Московская математическая олимпиада, 2002.
10 класс
1. Тангенсы углов треугольника — натуральные числа. Чему они могут быть равны?     (А. Заславский)
2. Про положительные числа а, Ь, с известно, что.  Докажите, что a + b + c ЗаЬс.    (С. Злобин)
3.   В выпуклом четырёхугольнике ABCD точки Е и F являются серединами сторон ВС и CD соответственно. Отрезки АЕ, AF и EF делят четырёхугольник на 4 треугольника, площади которых равны последовательным натуральным числам. Каково наибольшее возможное значение площади треугольника ABD?                             (С. Шестаков)
4.   Каждый зритель, купивший билет в первый ряд кинотеатра, занял одно из мест в первом ряду. Оказалось, что все места в первом ряду заняты, но каждый зритель сидит не на своём месте. Билетёр может менять местами соседей, если оба сидят не на своих местах. Всегда ли он сможет рассадить всех на свои места?      (А. Шаповалов)
5.   В городе Удоеве выборы мэра проходят следующим образом. Если в очередном туре голосования никто из кандидатов не набрал больше половины голосов, то проводится следующий тур с участием всех кандидатов, кроме последнего по числу голосов. (Никогда два кандидата не набирают голосов поровну; если кандидат набрал больше половины голосов, то он становится мэром и выборы заканчиваются.) Каждый избиратель в каждом туре голосует за одного из кандидатов.

Решение 2. Опишем эту игру по-другому. Есть два ряда по 65 точек в каждом (точки одного ряда обозначают горизонтали доски, точки другого — вертикали).
Постановке шашки на пересечение горизонтали и вертикали соответствует проведение отрезка, соединяющего точки, которые обозначают эти горизонталь и вертикаль. Таким образом, правила запрещают проводить из одной точки больше двух отрезков.
Второй игрок должен играть (за исключением последнего хода) так, чтобы после каждого его хода проведённые отрезки образовывали незамкнутую ломаную (возможно самопересекающуюся). Тогда после А-го хода второго игрока ломаная будет состоять из 2к звеньев и проходить через 2к + 1 точку (к точек одного ряда и к + 1 — другого). Поэтому первые 64 хода второй игрок всегда сможет продолжить ломаную или соединить её с отдельным отрезком, проведённым первым на предыдущем ходе. Последним, 65-м ходом, второй игрок должен соединить отрезком начало и конец ломаной, превращая её в замкнутую ломаную, проходящую через все 130 точек. После этого первый игрок не сможет сделать ход.

Рейтинг: 4.8 баллов / 2537 оценок
Формат: Книга
Уже скачали: 12775 раз



Похожие Книги

Нам показалось, что Книги ниже Вас заинтересуют не меньше. Эти издания Вы так же можете скачивать и читать совершенно бесплатно на сайте!


Вы не зарегистрированы!

Если вы хотите скачивать книги, журналы и аудиокниги бесплатно, без рекламы и без смс, оставлять комментарии и отзывы, учавствовать в различных интересных мероприятиях, получать скидки в книжных магазинах и многое другое, то Вам необходимо зарегистрироваться в нашей Электронной Библиотеке.

Отзывы читателей


Ой!

К сожалению, в нашей Бесплатной Библиотеке пока нет отзывов о Книге LXV Московская математическая олимпиада, 2002. Помогите нам и другим читателям окунуться в сюжет Книги и узнать Ваше мнение. Оставьте свой отзыв или обзор сейчас, это займет у Вас всего-лишь несколько минут.