Лекции по математической статистике, Чернова Н.И., 2002.
Предлагаемый вашему вниманию курс теоретической статистики содержит материал из классических разделов математической статистики. Речь пойдет об оценке параметров, проверке гипотез, немного о регрессионном анализе. Курс предназначен студентам экономического факультета Нгу, но его могут попробовать освоить студенты математического факультета. Курс не содержит экономических приложений и ни в коей мере не собирается обсуждать применение статистических методов. И то, и другое студенты-экономисты в НГУ изучают в годовом курсе эконометрики (регрессионного анализа).
Основные понятия математической статистики.
Математическая (или теоретическая) статистика опирается на методы и понятия теории вероятностей, но решает в каком-то смысле обратные задачи.
В теории вероятностей рассматриваются случайные величины с заданным распределением или случайные эксперименты, свойства которых целиком известны. Предмет теории вероятностей — свойства и взаимосвязи этих величин (распределений).
Но часто эксперимент представляет собой черный ящик, выдающий лишь некие результаты, по которым требуется сделать вывод о свойствах самого эксперимента. Наблюдатель имеет набор числовых (или их можно сделать числовыми) результатов, полученных повторением одного и того же случайного эксперимента в одинаковых условиях.
При этом возникают, например, следующие вопросы: -
Если мы наблюдаем одну случайную величину — как по набору ее значений в нескольких опытах сделать как можно более точный вывод о ее распределении? -
Если мы наблюдаем одновременно проявление двух (или более) признаков, т. е. имеем набор значений нескольких случайных величин — что можно сказать об их зависимости? Есть она или нет? А если есть, то какова эта зависимость?
Оглавление
1 Основные понятия
1.1 Основные понятия выборочного метода
1.2 Выборочное распределение
1.3 Эмпирическая функция распределения, гистограмма
1.4 Выборочные моменты
1.5 Состоятельность выборочных характеристик
1.5.1 Свойства ЭФР
1.5.2 Свойства гистограммы
1.5.3 Свойства выборочных моментов
1.6 Группированные данные
1.7 Вопросы и упражнения
2 Точечное оценивание
2.1 Параметрические семейства распределений
2.2 Свойства оценок
2.3 Метод моментов
2.4 Состоятельность ОММ
2.5 Метол максимального правдоподобия
2.6 Вопросы и упражнения
3 Сравнение оценок
3.1 Среднеквадратический подход
3.2 Единственность эффективной оценки
3.3 Асимптотически нормальные оценки
3.4 Скорость сходимости
3.5 Асимптотическая нормальность ОММ
3.6 Асимптотический подход к сравнению оценок
3.7 Вопросы и упражнения
4 Эффективные оценки
4.1 Условия регулярности
4.2 Примеры
4.3 Неравенство Рао — Крамера
4.4 Проверка эффективности оценок
4.5 BLUE
4.6 Вопросы и упражнения
5 Интервальное оценивание
6 Распределения, связанные с нормальным
6.1 Гамма-распределение
6.2 X2 - распределения Пирсона
6.3 Распределение Стьюдента
6.4 Распределение Фишера
6.5 Лемма Фишера
6.6 Доверительные интервалы для параметров нормального распределения
6.7 Вопросы и упражнения
7 Проверка гипотез
7.1 Две простые гипотезы
7.2 Подходы к сравнению критериев
7.3 Критерий отношения правдоподобия
7.3.1 Для математиков
7.3.2 Лемма Неймана — Пирсона
8 Критерии согласия
8.1 Критерий Колмогорова
8.2 Критерий X2 Пирсона
8.3 Критерий X2 для проверки параметрической гипотезы
8.4 Проверка гипотезы однородности: критерий Колмогорова — Смирнова
8.5 Проверка гипотезы независимости: критерий «хи-квадрат» Пирсона
8.6 Критерий Фишера
8.7 Критерий Стьюдента
8.8 Гипотеза о среднем нормальной совокупности с известной дисперсией
8.9 Гипотеза о среднем нормальной совокупности с неизвестной дисперсией
8.10 Критерии и доверительные интервалы
9 Линейная регрессия
9.1 Математическая модель регрессии
9.2 Метод максимального правдоподобия
9.3 Метод наименьших квадратов
9.4 Примеры
9.5 Общая модель линейной регрессии
9.6 Метод наименьших квадратов. Нормальное уравнение
9.7 Свойства ОМНК
Добавления
А Многомерное нормальное распределение
В Доказательство теоремы Пирсона.
Рейтинг: | 4.8 баллов / 2537 оценок |
Формат: | Книга |
Уже скачали: | 12787 раз |
Нам показалось, что Книги ниже Вас заинтересуют не меньше. Эти издания Вы так же можете скачивать и читать совершенно бесплатно на сайте!
Название: Нет в лесу никаких разбойниковАвтор: Линдгрен АстридИздательство: Семья и школа (Москва)Год: 1995Страниц: 272 (с иллюстрациями)Формат: DJVUРазмер: 3.7 MBISBN: 5-88539-032-0Качество: выше сре . . .
Автор: Александра Яковлевна БруштейнНазвание: В рассветный часИздательство: АСТ, АстрельISBN: 978-5-17-053652-8, 978-5-271-20602-3Год: 2008Формат: rtf, fb2Размер: 3,2 mbДля сайта: www.bankknig.netЭто . . .
Автор: Ю. Коваль, Т. Маврина (художник)Название: Стеклянный прудИздательство: Детская литератураГод: 1978Формат: djvuРазмер: 12 mbКнига с рассказами для взрослых и малых детей с качественными иллюстра . . .
Автор: Жукова О.С. Издательство: Оникс Год издания: 2007 Серия: Обучение с пеленок Страниц: 16Формат: pdf Размер: 13,5 МбЦель данной книги - развитие внимания малыша. Перелистывая разрезанные стран . . .
Автор: Александра Яковлевна БруштейнНазвание: Дорога уходит в даль...Издательство: АСТ, АстрельISBN: 978-5-17-032028-8, 978-5-271-12169-2Год: 2007Формат: rtf, fb2Размер: 2,7 mbДля сайта: www.bankknig . . .
Название: Детская энциклопедия динозавровАвтор: Сэм Тэплин Серия: Энциклопедии Издательство: Росмэн-ПрессISBN: 978-5-353-01737-0Год издания: 2007Страниц: 64 Язык: русскийФормат: djvu в архиве rar(+5% . . .
Название: Веселая Азбука Кирилла и МефодияАвтор: КоллективИздательство: ООО "Кирилл и Мефодий"Серия: Занимательные урокиГод выпуска: 2005ISBN: 00001548, 4601656001548Страниц: МультимедиаФормат: ISOРаз . . .
Название: Сборник книг Валентина БерестоваАвтор: Валентин БерестовЖанр: для детей, фантастикаФормат: fb2Язык: русскийКачество: отличноеГод издания: 2000-2010Размер: 6.9 mb (+5%) ..."Витя, Фитюлька и Л . . .
Автор: О. Н. ЗемцоваНазвание: Развиваем мышлениеСерия: Дошкольная мозаика. 2-3 года.Издательство: МахаонISBN: 978-5-389-00369-9Год: 2008Страниц: 36Формат: pdfРазмер: 11,4 МбЯзык: русскийДля сайта: w . . .
Название: В мире звуковАвтор:Л. А. Новикова Л. Г. РозумИздательство:Народная асветаГод издания:1997Формат:pdfРазмер:4,18мбУчебное пособие для подготовительного класса специальной общеобразовательной . . .
Если вы хотите скачивать книги, журналы и аудиокниги бесплатно, без рекламы и без смс, оставлять комментарии и отзывы, учавствовать в различных интересных мероприятиях, получать скидки в книжных магазинах и многое другое, то Вам необходимо зарегистрироваться в нашей Электронной Библиотеке.
К сожалению, в нашей Бесплатной Библиотеке пока нет отзывов о Книге Лекции по математической статистике, Чернова Н.И., 2002. Помогите нам и другим читателям окунуться в сюжет Книги и узнать Ваше мнение. Оставьте свой отзыв или обзор сейчас, это займет у Вас всего-лишь несколько минут.