Квантовая механика для математиков, Тахтаджян Л.А., 2011


Книга Квантовая механика для математиков, Тахтаджян Л.А., 2011

Квантовая механика для математиков, Тахтаджян Л.А., 2011.
  Книга посвящена математически строгому изложению квантовой механики, в особенности вопросов, связанных с методом континуального интегрирования и суперсимметрий. Она будет полезна аспирантам и научным сотрудникам-математикам, в сфере научных интересов которых находятся математические аспекты квантовой механики, а также её приложения и связи с различными подходами современной математики.

Наблюдаемые, состояния и динамика.
Квантовая механика изучает микромир — физические законы в атомных масштабах, которые нельзя адекватно описать с помощью классической механики. Свойства микромира очень сильно отличаются от нашего повседневного опыта, поэтому неудивительно, что его законы кажутся противоречащими здравому смыслу. Так, классические механика и электродинамика не могут объяснить устойчивость атомов и молекул. Точно также не могут эти теории согласовать разные свойства света — волнового характера в явлениях дифракции и интерференции и корпускулярного — в фотоэлектрической эмиссии и рассеянии свободными фотонами. Фундаментальное различие между микромиром и наблюдаемым миром вокруг нас в том, что в микромире любой эксперимент приводит к взаимодействию с системой и тем самым нарушает ее свойства, тогда как в классической физике всегда предполагается, что можно пренебречь возмущениями, вносимыми в систему измерением. Это налагает ограничения на возможности наблюдения и приводит к выводу, что существуют наблюдаемые, которые нельзя измерить одновременно.
Содержание     
Предисловие к русскому изданию
Предисловие редактора перевода
Предисловие
ЧАСТЬ I. ОСНОВЫ
ГЛАВА 1. Классическая механика
1.1. Лагранжева механика
1.1.1. Обобщенные координаты
1.1.2. Принцип наименьшего действия
1.1.3. Примеры лагранжевых систем
1.1.4. Симметрии и теорема Нётер
1.1.5. Одномерное движение
1.1.6. Движение в центральном поле и задача Кеплера
1.1.7. Преобразование Лежандра
1.2. Гамильтонова механика
1.2.1. Уравнения Гамильтона
1.2.2. Функционал действия в фазовом пространстве
1.2.3. Действие как функция координат
1.2.4. Классические наблюдаемые и скобка Пуассона
1.2.5. Канонические преобразования и производящие функции
1.2.6. Симплектические многообразия
1.2.7. Пуассоновы многообразия
1.2.8. Представления Гамильтона и Лиувилля
1.3. Замечания и ссылки
ГЛАВА 2. Основные принципы квантовой механики
2.1. Наблюдаемые, состояния и динамика
2.1.1. Математическая формулировка
2.1.2. Соотношения неопределенности Гейзенберга
2.1.3. Динамика
2.2. Квантование
2.2.1. Коммутационные соотношения Гейзенберга
2.2.2. Координатное и импульсное представления
2.2.3. Свободная квантовая частица
2.2.4. Примеры квантовых систем
2.2.5. Старая квантовая механика
2.2.6. Гармонический осциллятор
2.2.7. Голоморфное представление и виковские символы
2.3. Соотношения Вейля
2.3.1. Теорема Стоуна-фон Неймана
2.3.2. Инвариантная формулировка
2.3.3. Квантование Вейля
2.3.4. ?-произведение
2.3.5. Деформационное квантование
2.4. Замечания и ссылки
ГЛАВА 3. Уравнение Шредингера
3.1. Общие свойства
3.1.1. Самосопряженность
3.1.2. Характеризация спектра
3.1.3. Теорема о вириале
3.2. Одномерное уравнение Шредингера
3.2.1. Функции Йоста и коэффициенты перехода
3.2.2. Разложение по собственным функциям
3.2.3. S-матрица и теория рассеяния
3.2.4. Другие граничные условия
3.3. Угловой момент и SO(3)
3.3.1. Операторы углового момента
3.3.2. Теория представлений SO(3)
3.4. Задача двух тел
3.4.1. Отделение центра масс
3.4.2. Трехмерная теория рассеяния
3.4.3. Частица в центрально-симметричном потенциале
3.5. Атом водорода и SO(4)
3.5.1. Дискретный спектр
3.5.2. Непрерывный спектр
3.5.3. Скрытая SO(4) симметрия
3.6. Квазиклассическая асимптотика - I
3.6.1. Асимптотика, зависящая от времени
3.6.2. Асимптотика, не зависящая от времени
3.6.3. Правила квантования Бора-Вильсона-Зоммерфельда
3.7. Замечания и ссылки
ГЛАВА 4. Спин и тождественные частицы
4.1. Спин
4.1.1. Операторы спина
4.1.2. Спин и теория представлений SU(2)
4.2. Заряженная спиновая частица в магнитном поле
4.2.1. Гамильтониан Паули
4.2.2. Частица в однородном магнитном поле
4.3. Система тождественных частиц
4.3.1. Постулат симметризации
4.3.2. Диаграммы Юнга и теория представлений SymN
4.3.3. Двойственность Шура-Вейля и симметрия волновых функций
4.4. Замечания и ссылки
ЧАСТЬ II. ФУНКЦИОНАЛЬНЫЕ МЕТОДЫ И СУПЕРСИММЕТРИЯ
ГЛАВА 5. Фейнмановская формулировка квантовой механики
5.1. Фейнмановский интеграл по путям
5.1.1. Фундаментальное решение уравнения Шредингера
5.1.2. Фейнмановский интеграл по путям в фазовом пространстве
5.1.3. Фейнмановский интеграл по путям в конфигурационном пространстве
5.1.4. Несколько степеней свободы
5.2. Символы оператора эволюции и интегралы по путям
5.2.1. pq-символ
5.2.2. qp-символ
5.2.3. Вейлевский символ
5.2.4. Виковский символ
5.3. Фейнмановский интеграл для гармонического осциллятора
5.3.1. Гауссово интегрирование
5.3.2. Пропагатор гармонического осциллятора
5.3.3. Тождество Мелера
5.4. Гауссовы интегралы по путям
5.4.1. Гауссов интеграл по путям для свободной частицы
5.4.2. Гауссов интеграл по путям для гармонического осциллятора
5.5. Регуляризованные детерминанты дифференциальных операторов
5.5.1. Граничные условия Дирихле
5.5.2. Периодические граничные условия
5.5.3. Дифференциальные операторы первого порядка
5.6. Квазиклассическая асимптотика - II
5.6.1. Использование фейнмановского интеграла по путям
5.6.2. Строгий вывод
5.7. Замечания и ссылки
ГЛАВА 6. Интегрирование в функциональных пространствах
6.1. Гауссовы меры
6.1.1. Конечномерный случай
6.1.2. Бесконечномерный случай
6.2. Мера Винера и интеграл Винера
6.2.1. Определение меры Винера
6.2.2. Условная мера Винера и формула Фейнмана-Каца
6.2.3. Соотношение между интегралами Винера и Фейнмана
6.3. Гауссовы интегралы Винера
6.3.1. Граничные условия Дирихле
6.3.2. Периодические граничные условия
6.4. Замечания и ссылки
ГЛАВА 7. Фермионные системы
7.1. Канонические антикоммутационные соотношения
7.1.1. Мотивировка
7.1.2. Алгебры Клиффорда
7.2. Алгебры Грассмана
7.2.1. Реализация канонических антикоммутационных соотношений
7.2.2. Дифференциальные формы
7.2.3. Интеграл Березина
7.3. Градуированная линейная алгебра
7.3.1. Градуированные векторные пространства и супералгебры
7.3.2. Примеры супералгебр
7.3.3. Суперслед и березиниан
7.4. Интегралы по путям для антикоммутирующих переменных
7.4.1. Виковские и матричные символы
7.4.2. Интеграл по путям для оператора эволюции
7.4.3. Гауссовы интегралы по путям в грассмановых переменных
7.5. Замечания и ссылки
ГЛАВА 8. Суперсимметрия
8.1. Супермногообразия
8.2. Эквивариантные когомологии и локализация
8.2.1. Конечномерный случай
8.2.2. Бесконечномерный случай
8.3. Классическая механика на супермногообразиях
8.3.1. Функции с антикоммутирующими значениями
8.3.2. Классические системы
8.4. Суперсимметрия
8.4.1. Полный угловой момент
8.4.2. Преобразование суперсимметрии
8.4.3. Суперсимметричная частица на римановом многообразии
8.5. Квантовая механика на супермногообразиях
8.6. Формула Атьи-Зингера для индекса
8.7. Замечания и ссылки
Литература.

Рейтинг: 4.8 баллов / 2537 оценок
Формат: Книга
Уже скачали: 12812 раз



Похожие Книги

Нам показалось, что Книги ниже Вас заинтересуют не меньше. Эти издания Вы так же можете скачивать и читать совершенно бесплатно на сайте!

  • Книга Чиркова Вера  - 62 книги (2005-2015г. )

    Чиркова Вера - 62 книги (2005-2015г. )

    Название: Чиркова Вера - 62 книги (2005-2015г. ) Автор: Вера Андреевна Чиркова Год издания: 2005-2015 Язык: Русский Формат: fb2 Размер: 51,46 Мб Описание: Чиркова Вера Андреевна родилась 27 октября 1 . . .

  • Книга 4-х недельный тренинг по профессиональной съемке свадеб на DSLR

    4-х недельный тренинг по профессиональной съемке свадеб на DSLR

    Название: 4-х недельный тренинг по профессиональной съемке свадеб на DSLR Автор: Андрей Тюменцев Издательство: Россия Год издания: 2015 Язык: Русский Формат: MP4 Качество: отличное Размер: 7400 МбОп . . .

  • Книга Сильнее времени. Планета бурь

    Сильнее времени. Планета бурь

    Название: Сильнее времени. Планета бурь Автор: Александр Казанцев Серия или выпуск: Классическая библиотека приключений и фантастики Издательство: М: Центрполиграф Год издания: 1997 Страниц: 489 Язы . . .

  • Книга Le chocolat : les douces recettes

    Le chocolat : les douces recettes

    Автор: Auteurs CompositeНазвание:Le chocolat : les douces recettesИздательство: Le BallonГод: 2000Формат: PDF Размер: 23.4mbЯзык: FrançaisRecettes craquantes des quatre coins du monde depositfil . . .

  • Книга Le Livre Des Roses

    Le Livre Des Roses

    Автор: Bénédicte BoudassouНазвание: Le Livre Des RosesИздательство: ESIГод: 2010Формат: pdfРазмер: 37.58 mbЯзык: FrançaisParfumées, romantiques ou originales, les plus belles rose . . .

  • Книга Таксопарк (Аудиокнига)

    Таксопарк (Аудиокнига)

    Название: Таксопарк Автор: Илья Штемлер Читает: Виктор МищенкоИздательство: нигде не купишьГод: 2009Формат: mp3 44 kHz, 96 kbpsВремя звучания: 14 часов 58 минут Размер: 617.6 MBРоман о работни . . .

  • Книга Игорь Шафаревич в 23 произведениях

    Игорь Шафаревич в 23 произведениях

    Название: Игорь Шафаревич в 23 произведениях Автор: Игорь Ростиславович Шафаревич Серия или выпуск: Сборник произведений Издательство: Разные Год издания: 2015 Страниц: 23 книги Язык: Русский Формат . . .

  • Книга La Cuisine Chinoise

    La Cuisine Chinoise

    Автор: Kenneth LoНазвание: La Cuisine ChinoiseИздательство: Gründ, Collection : La Passion deГод: 1980Формат: PDFРазмер: 24,5 mbЯзык: FrançaisИллюстрированная кулинарная книга, с подробным . . .

  • Книга Введение в теорию полета искусственных спутников Земли

    Введение в теорию полета искусственных спутников Земли

    Название: Введение в теорию полета искусственных спутников Земли Автор: Эльясберг П.Е Издательство: Наука Год издания: 1965 Язык: Русский Формат: DJVU Качество: хорошее Размер: 10,6 МбОписание: В кн . . .

  • Книга Криминология. Вопросы и ответы

    Криминология. Вопросы и ответы

    Название: Криминология. Вопросы и ответы Автор: Малков В.Д. Издательство: Юриспруденция Год издания: 2008 Страниц: 190 Язык: Русский Формат: rtf, epub Размер: 1.2 МбОписание: Настоящее учебное пособ . . .


Вы не зарегистрированы!

Если вы хотите скачивать книги, журналы и аудиокниги бесплатно, без рекламы и без смс, оставлять комментарии и отзывы, учавствовать в различных интересных мероприятиях, получать скидки в книжных магазинах и многое другое, то Вам необходимо зарегистрироваться в нашей Электронной Библиотеке.

Отзывы читателей


Ой!

К сожалению, в нашей Бесплатной Библиотеке пока нет отзывов о Книге Квантовая механика для математиков, Тахтаджян Л.А., 2011. Помогите нам и другим читателям окунуться в сюжет Книги и узнать Ваше мнение. Оставьте свой отзыв или обзор сейчас, это займет у Вас всего-лишь несколько минут.