Курс дифференциальных и интегральных уравнений с дополнительными главами анализа, Лизоркин П.И., 1981


Книга Курс дифференциальных и интегральных уравнений с дополнительными главами анализа, Лизоркин П.И., 1981

Курс дифференциальных и интегральных уравнений с дополнительными главами анализа, Лизоркин П.И., 1981.
  Для студентов инженерно-физических и физико-технических специальностей вузов с повышенной математической подготовкой.
Материал в книге освещается с современных позиций, с привлечением идей и методов функционального анализа. С этой целью в нее включены главы, посвященные функциональным пространствам, анализу Фурье и первоначальным сведениям по теории операторов.
Книгу можно рассматривать также как введение в круг идей и методов функционального анализа на основе классического аппарата дифференциальных и интегральных уравнений. В силу своего «промежуточного» характера книга будет полезна инженерно-техническим работникам, пользующимся этим аппаратом и желающим ознакомиться с более современным его освещением.

ТРИГОНОМЕТРИЧЕСКИЕ РЯДЫ ФУРЬЕ.
Ряды по тригонометрической системе функций 1, cos x, sin x, ..., соs nx, sin nx, ... (*) можно использовать для иллюстрации общих положений развитой в предыдущей главе теории. Однако эти ряды занимают исключительное положение в анализе и заслуживают большего. Исторически ряды по системе (*) сыграли важную роль в возникновении и развитии современных идей и концепций анализа. В частности, теория интегрирования многим обязана исследованиям по тригонометрическим рядам. Да и по своей значимости для приложений они занимают первое место среди других ортогональных систем.
В данной главе освещаются некоторые классические аспекты теории тригонометрических рядов Фурье (вопросы поточечной сходимости, равномерной сходимости, суммируемости и пр.). Прослеживаются связи с идеями предыдущей главы. В частности, доказывается полнота тригонометрической системы. Рассматриваются операции над тригонометрическими рядами, важные в приложениях.
ОГЛАВЛЕНИЕ
Предисловие
Введение  
Раздел I ДИФФЕРЕНЦИАЛЬНЫЕ УРАВНЕНИЯ
Глава 1. Дифференциальные уравнения первого порядка
§1. Геометрическая интерпретация уравнения у' = f(x, у) и его решения. Интегральные кривые. Задача Коши   
§2. Вспомогательные предложения
§3. Теорема существования и единственности (локальный вариант)
§4. Продолжение решения
§5. Общее решение. Зависимость решения от начальных данных
§6. Корректность задачи Коши. Зависимость решения от параметров. О приближенных решениях
§7. Уравнение в дифференциалах   
Глава 2. Первоначальные сведения о системах дифференциальных уравнений и уравнениях старшего порядка
§1. Определения и предварительные соображения
§2. Нормальные системы дифференциальных уравнений
§3. Сведение уравнения n-го порядка к системе. Следствия
Глава 3. Линейные дифференциальные уравнения (л. д. у.) порядка n (задача Коши)
§1. Сведение задачи Коши для л. д. у. к интегральному уравнению Вольтерра и ее разрешимость   
§2. Однородное л. д. у. n-го порядка   
§3. Неоднородные л. д. у. Метод вариации постоянных
§4. Линейные дифференциальные уравнения порядка n с постоянными коэффициентами   
Раздел II АНАЛИЗ ФУРЬЕ. ИНТЕГРАЛЬНЫЕ УРАВНЕНИЯ. КРАЕВЫЕ ЗАДАЧИ
Глава 4. Функциональные пространства и ортогональные разложения
§1. Понятие нормированного пространства. Функциональные пространства
§2. Системы элементов нормированного пространства
§3. Евклидово пространство и ортогональные системы в нем
§4. Ряды Фурье в евклидовом пространстве
§5. Дополнительные сведения о пространствах CLp, об их расширении, пополнении (и сужении)
§6. Ряды Фурье по полиномам Лежандра
§7. Ортогональность с весом. Случай бесконечного промежутка; полиномы Эрмита
Глава 6. Тригонометрические ряды Фурье
§1. Предварительные сведения
§2. Основные вопросы теории тригонометрических рядов. Тригонометрические ряды Фурье (ТРФ)
§3. Условия поточечной сходимости тригонометрического ряда Фурье. Принцип локализации  
§4. Условия равномерной сходимости ТРФ. Об абсолютной сходимости тригонометрического ряда
§5. О рядах Фурье непрерывных функций. Метод суммирования Фейера  
§6. Тригонометрическая система — ортогональный базис в L2 (-п, п). Следствия  
§7. Дифференцирование и интегрирование ТРФ
§8. Дополнительные сведения
Глава 6. Интегральные уравнения
§1. Классификация линейных интегральных уравнений
§2. О линейных уравнениях  
§3. Уравнение Фредгольма с вырожденным ядром
§4. Теорема о разрешимости (общий случай)
§5. Альтернатива Фредгольма
§6. Метод последовательных приближений (метод итераций)
§7. Первоначальные сведения об операторах в нормированных и евклидовых пространствах
§8. Самосопряженный интегральный оператор
§9. Билинейное разложение симметричного ядра и его итераций
§10. Разложение истокообразной функции (теорема Гильберта—Шмидта)  
§11. Билинейное разложение ядра и его итераций (продолжение)
§12. Интегральное уравнение с симметричным ядром
§13. Заключительные замечания
Глава 7. Линейные дифференциальные уравнения второго порядка (краевые задачи, решение рядами, специальные функции)
§1. Линейный дифференциальный оператор второго порядка
§2. Регулярная краевая задача и задача Штурма—Лиувилля (предварительные сведения)  
§3. ?-функция, элементарное решение, функция Грина  
§4. Эквивалентность задачи Штурма—Лиувилля интегральному уравнению. Теорема Стеклова  
§5. Общая краевая задача. Задача с параметром. Симметризуемые задачи
§6. Уравнения с полиномиальными и рациональными коэффициентами. Обыкновенные и особые точки. Решение рядами
§7. Уравнения Гаусса, Бесселя и др. Цилиндрические функции и др.
§8. О сингулярных краевых задачах  
Предметный указатель
Указатель сокращений
Указатель обозначений, пространств.

Рейтинг: 4.8 баллов / 2537 оценок
Формат: Книга
Уже скачали: 12866 раз



Похожие Книги

Нам показалось, что Книги ниже Вас заинтересуют не меньше. Эти издания Вы так же можете скачивать и читать совершенно бесплатно на сайте!

  • Книга Лечение заболеваний уха, горла, носа

    Лечение заболеваний уха, горла, носа

    Галина Владимировна Лавренова - доктор медицинских наук, профессор кафедры оториноларингологии Санкт-Петербургского государственного медицинского университета им. И. П. Павлова. Ее книга посвящена леч . . .

  • Книга Целительное пламя свечи

    Целительное пламя свечи

    Свеча – таинственный мистический символ, окруженный множеством суеверий и мифов. Это не случайно, ведь людям с давних пор известна потрясающая сила живого огня. Она может быть использована как во зло, . . .

  • Журнал PSM3 - February 2011

    PSM3 - February 2011

    Название: PSM3 - February 2011Год издания: 2011Автор: коллективЖанр: игрыФормат: PDFКоличество Страниц: 140Качество: HQЯзык: EnglishРазмер: 90 МBСкачать PSM3 - February 2011: . . .

  • Аудиокнига Правители Франции (Цикл радиопередач)

    Правители Франции (Цикл радиопередач)

    Радиопрограмма "Всё так" - это история в лицах и красках, рассказ о событиях прошлого, которые могут преподать урок в настоящем. Её ведущие - доктор исторических наук Наталия Басовская и главный редак . . .

  • Аудиокнига Червонская Галина Петровна - Прививки: мифы и реальность (Аудиокнига)

    Червонская Галина Петровна - Прививки: мифы и реальность (Аудиокнига)

    Галина Петровна Червонская – высококвалифицированный специалист в области вакцинологии, вирусолог с многолетним стажем. Она выступает за грамотный подход к вакцинопрофилактике, за индивидуальный подхо . . .

  • Книга Лечебник Письма здоровья №2 февраль 2011

    Лечебник Письма здоровья №2 февраль 2011

    На страницах "Лечебника"" много простых, доступных в применении рецептов и методов лечения. Все рецепты проверены опытом исцелившихся людей.Тема номера -как бороться с остеохондрозом.В номере - остеох . . .

  • Книга Ирина Градова - Врач от бога (2010/PDF)

    Ирина Градова - Врач от бога (2010/PDF)

    Врач Агния Смольская давно не видела свою подругу Лиду, но меньше всего она хотела встретиться с ней в собственной больнице! Женщина попала к ним с симптомами отравления, и прежде чем Агния успела что . . .

  • Книга Нин-дзютсу 4. Завещание воинов-невидимок

    Нин-дзютсу 4. Завещание воинов-невидимок

    Название: Нин-дзютсу 4. Завещание воинов-невидимокАвтор: Стивен К. ХайесГод Выпуска: 1996Формат: HTMLРазмер файла: 3.63 MbВ четвертом и последнем томе серии о ниндзя показано, как на естественной мест . . .

  • Аудиокнига Хемингуэй Эрнест - Зеленые холмы Африки (Аудиокнига)

    Хемингуэй Эрнест - Зеленые холмы Африки (Аудиокнига)

    Автобиографичная повесть Эрнеста Хемингуэя, вышедшая в 1935 году. Повествует об охоте писателя и его жены в африканских саваннах. В книге описано всё то, что происходило с Хемингуэем во время его двух . . .

  • Книга Психология социализации и социальной адаптации человека

    Психология социализации и социальной адаптации человека

    В книге подробно с психологической точки зрения описывается процесс онтогенетической социализации индивида и его адаптации к социальному миру. Рассматриваются связанные с этим общепсихологические проб . . .


Вы не зарегистрированы!

Если вы хотите скачивать книги, журналы и аудиокниги бесплатно, без рекламы и без смс, оставлять комментарии и отзывы, учавствовать в различных интересных мероприятиях, получать скидки в книжных магазинах и многое другое, то Вам необходимо зарегистрироваться в нашей Электронной Библиотеке.

Отзывы читателей


Ой!

К сожалению, в нашей Бесплатной Библиотеке пока нет отзывов о Книге Курс дифференциальных и интегральных уравнений с дополнительными главами анализа, Лизоркин П.И., 1981. Помогите нам и другим читателям окунуться в сюжет Книги и узнать Ваше мнение. Оставьте свой отзыв или обзор сейчас, это займет у Вас всего-лишь несколько минут.