История математики в школе - 9 - 10 класс - Глейзер Г.И.


Книга История математики в школе - 9 - 10 класс - Глейзер Г.И.

Название: История математики в школе - 9 - 10 класс. 1983.
Автор: Глейзер Г.И.
    В книге в виде коротких статей содержится материал по истории математики, доступный учащимся IX-X классов.
    Материал 1-й части предназначен для занятий на уроках, а 2-ю часть можно использовать на внеклассных занятиях.
    В пособии дан набор задач по алгебре и началам анализа и геометрии известных математиков прошлых веков. Книга иллюстрирована.

ОГЛАВЛЕНИЕ
От издательства. 5
I. ИСТОРИЯ МАТЕМАТИКИ НА УРОКАХ. 9 КЛАСС
Глава I. Алгебра и начала анализа.
§ 1. Действительные числа. Числовые функции 8
1. Краткий обзор развития понятия числа
2. Аксиомы натуральных чисел 10
3. Возникновение и применение идеи бесконечности в древнегреческой математике 11
4. История числа «пи» 17
5. Определение функции в XVIII в 20
6. Общее определение функции в XIX в. Дальнейшее развитие понятия функции 23
7. Идея предела в древности. Метод исчерпывания 26
8. О методе неделимых 29
9. Понятие предела в XVII-XVIII вв. Бесконечно малые. 31
10. Понятие предела - фундамент математического анализа в XIX в 34
11. О символе 38
12. О понятии непрерывности 40
§ 2. Производная и ее применение 42
13. Происхождение понятия производной. Мгновенная скорость движения -
14. Путь к производной через касательную к кривой 44
15. Символы и термины 46
16. Формулы дифференцирования у Лейбница и Эйлера и дефекты в их логическом обосновании -
17. Производная и дифференциал 48
18. Максимумы и минимумы. Об одной задаче Евклида
19. Максимумы и минимумы у Ферма 50
20. Максимумы и минимумы у Лейбница и Эйлера 51
21. Математическая индукция 53
§ 3. Тригонометрические функции 55
22. Краткий обзор развития тригонометрии
23. Теоремы сложения. Тригонометрические функции суммы и разности аргументов 58
24. Тригонометрические функции двойного и половинного аргумента. Формулы преобразования 59
25. Теорема тангенсов, формулы площади треугольника и некоторые другие формулы 60
26. Дифференциальное уравнение свободного гармонического колебания. Теория дифференциальных уравнений в XVIII в. 62
Глава II. Геометрия.
§ 4. Основные понятия стереометрии. Параллельность в пространстве. 65
27. Основные понятия в геометрии Евклида и в современной геометрии
28. Аксиомы в «Началах» Евклида 66
29. «Основания геометрии» Гильберта и сущность аксиоматического метода 68
30. Учение о параллельных в средние века 71
31. Открытие неевклидовой геометрии. 78
32. Старые и современные обозначения и символы в геометрии. 83
33. Изображения пространственных фигур. Из истории начертательной геометрии 84
§ 5. Преобразования пространства. Векторы 87
34. Геометрические исчисления в Древней Греции -
35. Исчисление отрезков в XVII-XVIII вв 88
36. Пути развития векторного исчисления 89
37. Геометрические преобразования 93
§ 6. Перпендикулярность в пространстве. Многогранные углы. 98
38. Перпендикулярность прямой к плоскости у Евклида, Коши и Лежандра
39. Теорема о трех перпендикулярах 99
40. Двугранные и многогранные углы 100
10 КЛАСС
Глава III. Алгебра и начала анализа.
§ 7. Первообразная и интеграл 101
41. Происхождение понятия определенного интеграла
42. Инфинитезимальные методы Архимеда 103
43. От Архимеда к Кеплеру и Кавальери 106
44. От Кавальери до Ньютона и Лейбница 109
45. «О глубокой геометрии» Лейбница
46. «Метод флюксий» Ньютона. Понятие неопределенного интеграла. ИЗ
47. Приближенное вычисление интегралов. Формул Симпсона. 117
48. Г. Ф. Лопиталь и его «Анализ бесконечно малых». 119
49. Дифференциальное и интегральное исчисление в трудах Эйлера и других ученых XVIII-XIX вв 123
50. Некоторые задачи, приводящие к понятию об обыкновенном дифференциальном уравнении 128
51. Геометрический смысл дифференциального уравнения первого порядка. Дифференциальные уравнения с разделяющимися переменными в школе Лейбница 132
§ 8. Показательная, логарифмическая и степенная функции. 134
52. Обобщение понятия степени
53. Логарифмическая функция. Число е 137
§ 9. Системы уравнений. Основная теорема алгебры. 142
54. Линейная алгебра. Системы уравнений.
55. Об Этьене Безу и его теореме 145
56. Об основной теореме алгебры 146
57. От классической алгебры к современной 147
Глава IV. Геометрия.
§ 10. Координатный метод в пространстве. 149
58. От элементарной к аналитической геометрии
59. Система координат и начала аналитической геометрии у Ферма. 150
60. Задача Паппа и декартовы координаты 152
61. Аполлоний и его конические сечения 154
62. Идея пространственных координат до Эйлера 157
63. Аналитическая геометрия в пространстве в трудах Эйлера, его современников и последователей 160
§ 11. Многогранники 162
64. Призма и пирамида
65. Симметрия в пространстве 163
66. Планиметрические понятия и предложения, их стереометрические аналоги. «Геометрия» Лобачевского и метод фузионизма. 164
67. «Теорема Эйлера» о многогранниках е 165
68. Объемы многогранников. Теорема Дена - Кагана. 166
69. Из истории вычисления объема пирамиды. 167
70. Об одной усеченной пирамиде в Московском папирусе. 169
71. О правильных многогранниках 171
§ 12. Фигуры вращения 176
72. Тела и поверхности вращения. Центр тяжести и теоремы Паппа - Гульдина
73. Цилиндр и цилиндрические поверхности 178
74 Конус и конические поверхности 179
75. Об одной древнеегипетской криволинейной поверхности. 180
76. Шар и сферическая поверхность у Евклида и Архимеда. 181
77. Объем шара и принцип Кавальери. 184
II. ИСТОРИЯ МАТЕМАТИКИ НА ВНЕКЛАССНЫХ ЗАНЯТИЯХ.
Глава V. Алгебра и начала анализа.
§ 13. О развитии современной алгебры 188
1. О понятии группы. Эварист Галуа
2. О понятиях кольца и поля. Абстрактная алгебра 190
3. От множества натуральных чисел к множеству комплексных чисел. Путь формально-логического расширения понятия числа. 192
§ 14. Комплексные числа и многочлены 193
4. Происхождение понятия комплексного числа. Его развитие в XVI-XVII вв
5. Комплексные числа в XVIII в. Формула Муавра. Труды Даламбера и Эйлера 198
6. Геометрическое истолкование комплексных чисел в XIX в. 201
§ 15. Из истории возникновения и развития теории множеств. 205
§ 16. Элементы комбинаторики и понятие вероятности 213
7. Основные понятия комбинаторики. Термины и символы.
8. Формула бинома Ньютона. Дальнейшее развитие комбинаторики 214
9. Понятие вероятности и зарождение науки о закономерностях случайных явлений 216
10. Краткий обзор дальнейшего развития теории вероятностей. 220
§ 17. Из истории непрерывных дробей 224
§ 18. Ряды 233
§ 19. Краткий обзор дальнейшего развития теории дифференциальных уравнений. 245
Глава VI. Геометрия.
§ 20. Из истории неевклидовой геометрии 248
§ 21. Как возникла и развивалась проективная геометрия 263
§ 22. Теория поверхностей. Из истории дифференциальной геометрии. 280
§ 23. Развитие топологии. Обобщение понятия геометрического пространства 296
Глава VII. Исторические задачи.
§ 24. Алгебра и начала анализа 307
§ 25. Геометрия. 311
§ 26. Ответы, указания, решения 319
Рекомендуемая литература 337
Именной указатель.
Бесконечно малые.
После работ Кеплера, Кавальери и др., в которых впервые в
XVII  в были применены идеи бесконечного в геометрии, в том же веке последовали работы Ферма, Паскаля, Валлиса, Ньютона и Лейбница, которые привели к формированию новых важнейших понятий - производной, интеграла и к созданию исчисления бесконечно малых.
Понятия производной, дифференциала и интеграла, как и весь математический анализ, ныне основываются на разработанном в XIX в. методе пределов, или, что в сущности все равно, на методе бесконечно малых. Не так это было в XVII и XVIII вв.
В конце XVII в. в Европе образовались две крупные математические школы, которые существовали на протяжении почти всего XVIII  в. Главой одной из них был Лейбниц. Как он сам, так и его ученики и сотрудники - Лопиталь, братья Бернулли и его непосредственные последователи, в том числе Эйлер, жили и творили в основном на континенте.
Вторая школа, предшественниками которой были Валлис и Барроу, возглавляемая Ньютоном, состояла из английских и шотландских ученых. В их числе был и Маклорен. Обе школы создали новые мощные алгорифмы; приведшие по сути к одним и тем же результатам - к созданию дифференциального и интегрального исчисления. Однако англичане придерживались метода флюксий и ньютонова метода пределов. Лейбниц же исходил из учения о бесконечно малых разностях конечных величин.

Рейтинг: 4.8 баллов / 2537 оценок
Формат: Книга
Уже скачали: 12848 раз



Похожие Книги

Нам показалось, что Книги ниже Вас заинтересуют не меньше. Эти издания Вы так же можете скачивать и читать совершенно бесплатно на сайте!

  • Книга Daemon

    Daemon

    Название: DaemonАвтор: Киреэна Капитанова Серия: Daemon -1Жанр: фэнтезиИздательство: СамиздатГод издания: 2011Страниц: 316Формат: RTF, PDFЯзык: русскийКачество: отличноеРазмер: 5,03 МбЖивете в тусклом . . .

  • Аудиокнига Роксолана (аудиокнига)

    Роксолана (аудиокнига)

    Автор: Павло ЗагребельныйНазвание: РоксоланаОзвучивает: Раскатова СветланаИздательство: Нигде не купишьГод издания аудиокниги: 2011Жанр: РоманАудио: MP3, 96 Кбит/с, 44.1 кГц, моноРазмер: 1.68 ГБПродол . . .

  • Журнал Traditional WoodWorking №11 2003

    Traditional WoodWorking №11 2003

    Название: Traditional WoodworkingНомер: 162Год/месяц издания: Ноябрь 2003Язык: EnglishКоличество страниц: 100Формат: PDFРазмер: 52 MbTraditional Woodworking - журнал, посвященный столярному делу. Обзо . . .

  • Аудиокнига Левиафан (аудиокнига)

    Левиафан (аудиокнига)

    Автор: Акунин БорисНазвание: ЛевиафанИсполнитель: Вильколек АндрейВремя воспроизведения: 08:37:49Жанр: ДетективИздательство: Нигде не купишьГод издания: 2011Прочитано по изданию: "Захаров", Москва, 20 . . .

  • Аудиокнига На дне (аудиокнига)

    На дне (аудиокнига)

    Автор: Максим ГорькийНазвание: На днеОзвучивают: Иосиф Раевский, Фаина Шевченко, Мария Титова, Владимир Готовцев, В. Добронравов, Александр Жильцов, Нина Тихомирова, Варвара Попова, А. Дмоховская, Сер . . .

  • Аудиокнига Трава забвения (Аудиокнига)

    Трава забвения (Аудиокнига)

    Автор: Катаев ВалентинНазвание: Трава забвенияИсполнитель: Герасимов ВячеславЖанр: ПовестьИздательство: Нигде не купишьГод издания: 2011Качество: mp3, 128 kbps, 44 kHz, MonoДлительность: 08:41:29Разме . . .

  • Аудиокнига Тайная жизнь великих писателей (аудиокнига)

    Тайная жизнь великих писателей (аудиокнига)

    Название: Тайная жизнь великих писателейАвтор: Роберт ШнакенбергИздательство: Аудиокнига своими рукамиГод выпуска: 2011Жанр: познавательное, биография, литератураАудио кодек: MP3Битрейт аудио: 128 . . .

  • Аудиокнига Із української старовини (аудиокнига)

    Із української старовини (аудиокнига)

    Автор: Яворницький ДмитроНазвание: Із української старовиниИсполнитель: Довгозвяга ГалинаВремя воспроизведения: 05:41:58Жанр: познавательнаяИздательство: Нигде не купишьГод издания: 2011Прочитано по и . . .

  • Журнал Traditional WoodWorking №112 September 1999

    Traditional WoodWorking №112 September 1999

    Название: Traditional WoodWorking №112 September 1999Автор: Коллектив авторовВыпуск: №112 SeptemberГод издания: 1999Страниц: 84Формат: PDFКачество: норм.Размер файла: 45 МбЯзык: EnglishTraditional . . .

  • Аудиокнига Стихи для детей  (аудиокнига)

    Стихи для детей (аудиокнига)

    Автор: Галина СоренковаНазвание: Стихи для детейОзвучивает: Екатерина ИвченкоИздательство: MuzStudioГод издания аудиокниги: 2011Жанр: Детская литератураАудио: FLAC, 1621 Кбит/сРазмер: 81 МБПродолжител . . .


Вы не зарегистрированы!

Если вы хотите скачивать книги, журналы и аудиокниги бесплатно, без рекламы и без смс, оставлять комментарии и отзывы, учавствовать в различных интересных мероприятиях, получать скидки в книжных магазинах и многое другое, то Вам необходимо зарегистрироваться в нашей Электронной Библиотеке.

Отзывы читателей


Ой!

К сожалению, в нашей Бесплатной Библиотеке пока нет отзывов о Книге История математики в школе - 9 - 10 класс - Глейзер Г.И.. Помогите нам и другим читателям окунуться в сюжет Книги и узнать Ваше мнение. Оставьте свой отзыв или обзор сейчас, это займет у Вас всего-лишь несколько минут.