Исследование операций, Писарук Н.Н., 2012.
В учебном пособии изучаются модели и методы из таких разделов исследования операций как нелинейная оптимизация с ограничениями, квадратичное, линейное, динамическое, целочисленное и стохастическое программирование, сетевая оптимизация, теория массового обслуживания. Вспомогательные сведения из других разделов математики приведены в приложениях.
Для студентов экономических, математических и инженерных специальностей университетов.
Скаляризация векторного критерия.
Среди способов скаляризации векторных критериев на практике наиболее часто используются два способа: свертка критериев и целевое программирование. Свертку критериев следует использовать тогда, когда значения всех критериев можно выразить в одной единице измерения. Когда в задаче имеются критерии, которые измеряются в разных единицах, то содержательный смысл свертки (взвешенной суммы) таких критериев непонятен (нельзя приписать какой-либо смысл сумме килограмма и секунды). В подобных случаях используют метод, который называют «целевым программированием», суть которого в том, чтобы найти такое решение, для которого значения всех критериев близки к заранее заданным целевым значениям.
Оглавление
Предмет исследования операций
0.1. Общая задача исследования операций
0.2. Упражнения
1. Нелинейная оптимизация с ограничениями
1.1. Необходимые условия оптимальности
1.1.1. Допустимые направления и выделение ограничений
1.1.2. Необходимые условия Куна — Таккера
1.1.3. Геометрическая и физическая интерпретация
1.1.4. Числовой пример
1.1.5. Экономическая интерпретация множителей Куна — Таккера
1.2. Достаточные условия оптимальности
1.2.1. Седловые точки и функции Лагранжа
1.2.2. Существование седловой точки для задач выпуклого программирования
1.2.3. Связь с условиями Куна — Таккера
1.3. Геометрическое программирование
1.3.1. Мономы и позиномы
1.3.2. Задача геометрического программирования
1.3.3. Сведение к задаче выпуклого программирования
1.4. Примеры задач нелинейного программирования
1.4.1. Неоклассическая задача потребления
1.4.2. Модель равновесия Фишера
1.4.3. Метод максимального правдоподобия
1.5. Мультикритериальные задачи
1.5.1. Скаляризация векторного критерия
1.5.2. Лексикографическая оптимизация
1.6. Упражнения
2. Линейное программирование
2.1. Двойственность в линейном программировании
2.1.1. Двойственные переменные и теневые цены
2.2. Симплекс-метод
2.3. Модели линейного программирования
2.3.1. Задача о диете
2.3.2. Арбитраж
2.3.3. Метод DEA
2.3.4. Краткосрочный финансовый менеджмент
2.3.5. Предсказание предпочтений потребителя
2.3.6. Проверка гипотез
2.4. Транспортная задача
2.4.1. Метод потенциалов
2.4.2. Численный пример
2.4.3. Агрегированное планирование
2.5. Упражнения
3. Квадратичное программирование
3.1. Критерий оптимальности
3.2. Линейная задача о дополнительности
3.2.1. Алгоритм Лемке
3.2.2. Пример
3.3. Модель Марковица оптимизации портфеля
3.3.1. Пример
3.4. Регрессия с ограничениями на коэффициенты
3.5. Аппроксимация выпуклыми функциями
3.6. Назначение цен на молочную продукцию
3.6.1. Формулировка
3.7. Упражнения
4. Смешанно-целочисленное программирование
4.1. Целочисленность и нелинейность
4.1.1. Фиксированные доплаты
4.1.2. Дискретные переменные
4.1.3. Аппроксимация нелинейной функции
4.1.4. Аппроксимация выпуклой функции
4.1.5. Логические условия
4.2. Множественные альтернативы и дизъюнкции
4.2.1. Размещение прямоугольных модулей на чипе
4.2.2. Линейная задача о дополнительности
4.2.3. Квадратичное программирование при линейных ограничениях
4.3. Метод сечений
4.4. Метод ветвей и границ
4.5. Метод ветвей и сечений
4.6. Примеры задач СЦП
4.6.1. Потоки с фиксированными доплатами
4.6.2. Размещение центров обслуживания
4.6.3. Размер партии: однопродуктовая модель
4.6.4. Размер партии: многопродуктовая модель
4.6.5. Планирование производства электроэнергии
4.7. Упражнения
5. Динамическое программирование
5.1. Общая схема
5.1.1. Прямая индукция
5.1.2. Обратная индукция
5.2. Задача о рюкзаке
5.2.1. 0,1-рюкзак
5.2.2. Целочисленный рюкзак
5.3. Размер партии: однопродуктовая модель
5.3.1. Неограниченная емкость склада
5.4. Контроль качества продукции, производимой на конвейере
5.5. Модель оптимального роста Касса — Купманса
5.5.1. Рекуррентная формула
5.5.2. Специальный случай функции полезности
5.6. Упражнения
6. Методы анализа сетей
6.1. Кратчайшие пути
6.1.1. Дерево кратчайших путей
6.1.2. Алгоритм построения дерева кратчайших путей
6.1.3. Алгоритм Форда— Веллмана
6.1.4. Алгоритм Дейкстры
6.1.5. Кратчайшие пути между всеми парами вершин
6.2. Потоки
6.3. Разложение потоков на элементарные
6.4. Сетевая транспортная задача
6.4.1. Критерии оптимальности
6.4.2. Сетевой симплекс-метод
6.5. Задача о максимальном потоке
6.5.1. Критерии оптимальности
6.5.2. Алгоритм пометок
6.6. Упражнения
7. Календарное планирование
7.1. Сетевые графики
7.2. Метод критического пути
7.2.1. Ранние и поздние сроки наступления событий
7.2.2. Ранние и поздние сроки начала и окончания работ
7.2.3. Четыре показателя резерва времени работы
7.3. Распределение ресурсов в графиках проектов
7.4. Упражнения
8. Задачи с неопределенными параметрами
8.1. Двустадийные задачи стохастического программирования
8.2. Минимизация рисков
8.2.1. Расширенная двустадийная модель
8.2.2. Кредитный риск
8.2.3. Портфель из трех активов
8.3. Мультистадийные задачи стохастического программирования
8.3.1. Синтетические опционы
8.3.2. Управление доходами
8.4. Упражнения
9. Теория массового обслуживания
9.1. Потоки событий
9.2. Схема гибели и размножения
9.2.1. Уравнения Колмогорова
9.3. Формулы Литтла
9.4. Многоканальная СМО с отказами
9.5. Одноканальная СМО с неограниченной очередью
9.6. Многоканальная СМО с неограниченной очередью
9.7. Упражнения
А. Элементы нелинейного анализа
А.1. Векторы и линейные пространства
А.2. Элементы топологии
А.2.1. Компактные множества. Теорема Вейерштрасса
А.3. Дифференцируемые функции
А.4. Необходимые условия локального минимума
А.5. Выпуклые множества
А.5.1. Выпуклые конусы
А.5.2. Теорема об отделении выпуклых множеств
А.6. Лемма Фаркаша
А.7. Выпуклые функции
А.7.1. Как доказать выпуклость функции
А.7.2. Преобразования, сохраняющие выпуклость функций
А.7.3. Субградиенты и субдифференциал
A.8. Квазивыпуклые функции
А.8.1. Критерии квазивыпуклости функций
A.8.2. Преобразования, сохраняющие квазивыпуклость функций
B. Элементы теории вероятностностей
В.1. Вероятностные пространства
В.2. Случайные величины
B.2.1. Математическое ожидание, дисперсия и стандартное отклонение
B.2.2. Совместное распределение случайных величин
B.3. Н
C. Графы
С.1. Специальные типы графов
C.2. Примеры самых известных задач теории графов
C.2.1. Эйлеровы графы
С.2.2. Задача коммивояжера
С.2.3. Задача о максимальной клике
С.2.4. Раскраска графа и проблема четырех красок
С.2.5. Укладка графа на плоскости
D. Сложность вычислений
D.1. Сложность алгоритмов
D.2. Полиномиальные алгоритмы
Литература
Предметный указатель.
Рейтинг: | 4.8 баллов / 2537 оценок |
Формат: | Книга |
Уже скачали: | 12751 раз |
Нам показалось, что Книги ниже Вас заинтересуют не меньше. Эти издания Вы так же можете скачивать и читать совершенно бесплатно на сайте!
Название: Война в Заливе 1990-1991 Автор: Г.Л. Роттман; Пер. с англ. Е.В. Матвеевой Год издания: 2004 Издательство: ООО «Издательство ACT»; ООО «Издательство Астрель» ISBN: 5-17-021799-4 / 5-27I-0 . . .
Название: Терроризм и террористы. СправочникАвтор: К. В. ЖариновИздательство: ХарвестISBN: 985-433-694-8Год издания: 1999Страниц: 608Язык: РусскийФормат: rtfРазмер: 5.14 МбОписание:В справочнике предс . . .
Название: Зеленый чай: напиток бессмертия Автор: Ольга Афанасьева Год издания: 2009 Издательство: М.: ACT; СПб: Астрель-СПб; Владимир:ВКТ ISBN: 978-5-17-040499-5 / 978-5-9725-0724-5 / 978-5-226-00 . . .
Название: Гиппеаструм Автор: авт.-сост. СВ. Кулиш Год издания: 2008 Издательство: М.: ACT; Донецк: Сталкер ISBN: 978-5-17-048585-7 / 978-966-09-0076-9 Серия: Самые известные комнатные растения ми . . .
Название: Избавление от целлюлита Автор: О. Крапивко Год издания: 2008 Издательство: М.: ACT: СПб.: Сова; Владимир: ВКТ ISBN: 978-5-17-043252-3 / 978-5-226-00297-7 Серия: Здоровье и жизнь Язы . . .
Название: Лечение молочным грибом Автор: Ольга Афанасьева Год издания: 2009 Издательство: М.: ACT; СПб: Астрель-СПб; Владимир:ВКТ ISBN: 978-5-17-041729-2 / 978-5-9725-0780-1 / 978-5-226-00342-4 Се . . .
Название: Антистрессовая диета Год издания: 2005 Издательство: М.: РИПОЛ классик ISBN: 5-7905-3386-8 Серия: Вкусная диета Язык: Русский Страниц: 64 Формат: PDF Размер: 3,1 MbКачество: Хороше . . .
Название: Самые вкусные салаты к празднику Автор: Крестьянова Н.Е Год издания: 2009 Издательство: М.: ACT; Владимир: ВКТ ISBN: 978-5-17-035596-9 / 978-5-226-00487-2 Серия: Быстро, вкусно, . . .
Автор: Patrick Higgins, Maura Kate Kilgore, Paul Hertlein Название: The Homebrewers' Recipe GuideИздательство: FiresideГод: 1996Формат: PDFРазмер: 7.48 MBКол-во стр.: 257Язык : английскийThe Homebrewe . . .
Название: Основы теории надежности. ПрактикумАвтор: Половко А. М., Гуров С. В.Издательство: БХВ-Петербург Год издания:2006 Страниц: 560ISBN: 5-94157-542-4Формат: DJVUРазмер: 11 МБКачество: Отличное, . . .
Если вы хотите скачивать книги, журналы и аудиокниги бесплатно, без рекламы и без смс, оставлять комментарии и отзывы, учавствовать в различных интересных мероприятиях, получать скидки в книжных магазинах и многое другое, то Вам необходимо зарегистрироваться в нашей Электронной Библиотеке.
К сожалению, в нашей Бесплатной Библиотеке пока нет отзывов о Книге Исследование операций, Писарук Н.Н., 2012. Помогите нам и другим читателям окунуться в сюжет Книги и узнать Ваше мнение. Оставьте свой отзыв или обзор сейчас, это займет у Вас всего-лишь несколько минут.