Интегральные уравнения, Забрейко П.П., Кошелев А.И., Красносельский М.А., 1968


Книга Интегральные уравнения, Забрейко П.П., Кошелев А.И., Красносельский М.А., 1968

Интегральные уравнения, Забрейко П.П., Кошелев А.И., Красносельский М.А., 1968.
    В книге изложены классические теории Фредгольма и Гильберта - Шмидта, которые существенно дополнены изложением теории интегральных уравнений с неотрицательными ядрами и уравнений., содержащих вполне непрерывные операторы.
Две главы посвящены изложению теории сингулярных уравнений - одномерных и многомерных, одна глава содержит изложение теории интегральных уравнений с почти разностным ядром и одна глава, последняя в книге, посвящена нелинейным интегральным уравнениям. В этой главе приводятся признаки полной непрерывности нелинейных интегральных операторов и рассмотрены вопросы существования и единственности, продолжения и ветвления решений уравнений, содержащих нелинейные интегральные операторы.
Книга предназначена для математиков, физиков, механиков, инженеров, использующих в своей деятельности методы теории интегральных уравнений.
Интегральное уравнение.
Интегральное уравнение иногда определяют как уравнение, которое содержит неизвестную функцию под знаком интеграла. Такое определение вряд ли можно назвать удачным: оно чересчур широко, в нем не указано, какие еще действия, кроме интегрирования, можно производить над неизвестной функцией, а тогда в качестве интегральных будут выступать, например, и дифференциальные уравнения. Так, если допустить в уравнении действие предельного перехода, то «интегральное» уравнение с неизвестной функцией u(х)
на самом деле есть дифференциальное уравнение второго порядка.
В то же время точно описать допустимые действия над неизвестной функцией, при которых мы соглашаемся считать уравнение интегральным, довольно трудно; в частности, нельзя изгнать действие предельного перехода, которое, по существу, входит, например, в определение сингулярного интеграла (гл. VI и IX), — тогда пришлось бы отказаться от рассмотрения сингулярных интегральных уравнений.
Мы не будем пытаться давать общее определение интегрального уравнения и ограничимся тем, что в следующих двух параграфах перечислим некоторые, наиболее важные, классы интегральных уравнений.

Рейтинг: 4.8 баллов / 2537 оценок
Формат: Книга
Уже скачали: 12791 раз



Похожие Книги

Нам показалось, что Книги ниже Вас заинтересуют не меньше. Эти издания Вы так же можете скачивать и читать совершенно бесплатно на сайте!


Вы не зарегистрированы!

Если вы хотите скачивать книги, журналы и аудиокниги бесплатно, без рекламы и без смс, оставлять комментарии и отзывы, учавствовать в различных интересных мероприятиях, получать скидки в книжных магазинах и многое другое, то Вам необходимо зарегистрироваться в нашей Электронной Библиотеке.

Отзывы читателей


Ой!

К сожалению, в нашей Бесплатной Библиотеке пока нет отзывов о Книге Интегральные уравнения, Забрейко П.П., Кошелев А.И., Красносельский М.А., 1968. Помогите нам и другим читателям окунуться в сюжет Книги и узнать Ваше мнение. Оставьте свой отзыв или обзор сейчас, это займет у Вас всего-лишь несколько минут.