Функциональный анализ, Лекции и упражнения, Дерр В.Я., 2013.
Представляет собой элементарный курс функционального анализа (метрические, линейные нормированные, гильбертовы пространства, теория линейных операторов и функционалов, теория линейных уравнений в банаховых пространствах, дифференцирование нелинейных отображений). Большое внимание уделяется обыкновенным дифференциальным и интегральным операторам и уравнениям. Изложен теоретический материал с подробными доказательствами, упражнения и задачи по основным разделам функционального анализа, приводятся подробные решения практически всех задач. Содержит также ряд индивидуальных домашних заданий.
Для студентов математических факультетов классических и технических университетов, готовящих специалистов по математическим направлениям. Будет полезно и молодым преподавателям.
Примеры.
Докажите, что отношение ~ на множестве всех норм, определенных на одном и том же линейном пространстве, действительно есть отношение эквивалентности, т. е. является рефлексивным, симметричным и транзитивным.
Докажите, что линейный непрерывный оператор, действующий в сепарабельном гильбертовом пространстве, является сильным пределом последовательности вполне непрерывных операторов.
Докажите, что объединение любого числа и пересечение конечного числа открытых множеств есть открытое множество. Покажите, что пересечение бесконечного множества открытых множеств может не быть открытым.
Оглавление
Предисловие
1. Метрические пространства
1.1. Определение и примеры
1.2. Основные понятия, связанные с метрикой
1.3. Анализ сходимости в конкретных пространствах
1.4. Полные метрические пространства
1.5. Теорема о пополнении
1.6. Принцип вложенных шаров
1.7. Принцип сжимающих отображений
1.8. Сепарабельные метрические пространства
1.9. Компактные множества
1.10. Критерий компактности множества в пространстве непрерывных функций
Упражнения
2. Линейные нормированные пространства
2.1. Определение и примеры
2.2. Конечномерные ЛНП
2.3. Прямое произведение. Изометрический изоморфизм
2.4. Ряды в банаховых пространствах
2.5. Лемма Рисса о почти перпендикуляре
2.6. Пространства с мерой. Пространство S(T,U,u)
2.7. Пространство Lp(T, U, u)
2.8. Плотные множества в Lp(T,U, u)
Упражнения
3. Гильбертовы пространства
3.1. Определение и простейшие свойства
3.2. Примеры гильбертовых пространств
3.3. Ортогональность
3.4. Ортогональные системы элементов
3.5. Ряд Фурье по ОНС
3.6. Роль пространства l2
3.7. Примеры полных ортогональных систем
Упражнения
4. Линейные операторы и функционалы
4.1. Линейные операторы и функционалы
4.2. Пространство линейных ограниченных операторов
4.3. Принцип равномерной ограниченности
4.4. Обратный оператор
Упражнения
5. Сопряженное пространство
5.1. Продолжение линейного ограниченного функционала
5.2. Следствия теоремы Банаха - Хана
5.3. Общий вид линейных непрерывных функционалов
5.4. Сопряженное пространство. Слабая сходимость
5.5. Сопряженный оператор
Упражнения
6. Вполне непрерывные операторы
6.1. Свойства линейного непрерывного оператора
6.2. Вполне непрерывные операторы
6.3. Важные примеры
6.4. Подпространство вполне непрерывных операторов
6.5. Другие свойства вполне непрерывных операторов
Упражнения
7. Спектр линейного оператора
7.1. Спектр линейного ограниченного оператора
7.2. Спектр вполне непрерывного оператора
7.3. Спектр самосопряженного вполне непрерывного оператора
Упражнения
8. Линейные уравнения в банаховых пространствах
8.1. Постановка задачи. Примеры
8.2. Первая теорема Фредгольма
8.3. Биортогональные системы
8.4. Вторая теорема Фредгольма
8.5. Третья теорема Фредгольма
8.6. Альтернатива Фредгольма
Упражнения
9. Дифференцирование нелинейных отображений
9.1. Функции со значениями в банаховых пространствах
9.2. Дифференцирование по Фреше
9.3. Примеры нахождения производной Фреше
9.4. Свойства производной Фреше
9.5. Формула линеаризации. Метод Ньютона
9.6. Производная и дифференциал Гато
9.7. Производные и дифференциалы Фреше высших порядков
Упражнения
10. Решение упражнений
1
2
3
4
5
6
7
8
9
11. Дополнения.
1. Доказательство неравенств
2. Индивидуальные домашние задания
Список литературы.
Рейтинг: | 4.8 баллов / 2537 оценок |
Формат: | Книга |
Уже скачали: | 12784 раз |
Нам показалось, что Книги ниже Вас заинтересуют не меньше. Эти издания Вы так же можете скачивать и читать совершенно бесплатно на сайте!
Автор: Соколов Н.Н. Год издания: 1939 Формат: pdf Издат.: Государственное учебно-педагогическое издательство Наркомпроса РСФСР Страниц: 173 Размер: 12,8 МБ . . .
Автор: Петров В.В. Год издания: 1987 Формат: djvu Издат.: Наука Страниц: 320 Размер: 2 Мб Язык: Русский В данной книге показан ряд новейших и . . .
Автор: Вейсенберг Е. Год издания: 1929 Формат: pdf Издат.: Теакинопечать Страниц: 36 Размер: 14,3 МБ Язык: Русский Когда еще не было создано . . .
Название: Новая аптека №11 (ноябрь 2011) Автор: коллектив Издательство: ИД "МЦФЭР" Страниц: 340 Формат: PDF Размер: 122 Мб Качество: Отличное Язык: Русский Год издания: 2011 Авторитетное профессиональ . . .
Название: Смерть на брудершафт. Фильма восьмая. Ничего святого(аудиокнига) Автор: Борис Акунин Издательство: Аудиокнига своими руками Формат: MP3 Размер: 348,47 Мб Качество: Отличное Язык: Русский Жан . . .
Автор: Переведенцев В.И. Год издания: 1975 Формат: pdf Издат.: Наука Страниц: 231 Размер: 11,3 МБ Язык: Русский Изучаю данную книгу нужна неб . . .
Автор: Братусь С.Н. Год издания: 1975 Формат: pdf Издат.: Юридическая литература Страниц: 328 Размер: 30,1 МБ Язык: Русский В работе рассматр . . .
Автор: Штейфон Б.А. Год издания: 1928 Формат: pdf Издат.: Белград. Русская типография Страниц: 136 Размер: 12,8 МБ Язык: Русский В сентябре 1 . . .
Автор: Кашкаров А. П. Год издания: 2011 Формат: djvu Издат.: ДМК Пресс Страниц: 136 Размер: 10 Мб Язык: Русский В данной книге освещены разны . . .
Название: Asi fue la Segunda Guerra Mundial 2: Totalitarismo Frente a Democracia Автор: Liddell Hart, Basil Henry Издательство: Editorial Anesa-Noguer-Rizzoli Год издания: 1972 Страниц: 25 Язык: Исп . . .
Если вы хотите скачивать книги, журналы и аудиокниги бесплатно, без рекламы и без смс, оставлять комментарии и отзывы, учавствовать в различных интересных мероприятиях, получать скидки в книжных магазинах и многое другое, то Вам необходимо зарегистрироваться в нашей Электронной Библиотеке.
К сожалению, в нашей Бесплатной Библиотеке пока нет отзывов о Книге Функциональный анализ, Лекции и упражнения, Дерр В.Я., 2013. Помогите нам и другим читателям окунуться в сюжет Книги и узнать Ваше мнение. Оставьте свой отзыв или обзор сейчас, это займет у Вас всего-лишь несколько минут.