Функциональный анализ, Лекции и упражнения, Дерр В.Я., 2013.
Представляет собой элементарный курс функционального анализа (метрические, линейные нормированные, гильбертовы пространства, теория линейных операторов и функционалов, теория линейных уравнений в банаховых пространствах, дифференцирование нелинейных отображений). Большое внимание уделяется обыкновенным дифференциальным и интегральным операторам и уравнениям. Изложен теоретический материал с подробными доказательствами, упражнения и задачи по основным разделам функционального анализа, приводятся подробные решения практически всех задач. Содержит также ряд индивидуальных домашних заданий.
Для студентов математических факультетов классических и технических университетов, готовящих специалистов по математическим направлениям. Будет полезно и молодым преподавателям.
Примеры.
Докажите, что отношение ~ на множестве всех норм, определенных на одном и том же линейном пространстве, действительно есть отношение эквивалентности, т. е. является рефлексивным, симметричным и транзитивным.
Докажите, что линейный непрерывный оператор, действующий в сепарабельном гильбертовом пространстве, является сильным пределом последовательности вполне непрерывных операторов.
Докажите, что объединение любого числа и пересечение конечного числа открытых множеств есть открытое множество. Покажите, что пересечение бесконечного множества открытых множеств может не быть открытым.
Оглавление
Предисловие
1. Метрические пространства
1.1. Определение и примеры
1.2. Основные понятия, связанные с метрикой
1.3. Анализ сходимости в конкретных пространствах
1.4. Полные метрические пространства
1.5. Теорема о пополнении
1.6. Принцип вложенных шаров
1.7. Принцип сжимающих отображений
1.8. Сепарабельные метрические пространства
1.9. Компактные множества
1.10. Критерий компактности множества в пространстве непрерывных функций
Упражнения
2. Линейные нормированные пространства
2.1. Определение и примеры
2.2. Конечномерные ЛНП
2.3. Прямое произведение. Изометрический изоморфизм
2.4. Ряды в банаховых пространствах
2.5. Лемма Рисса о почти перпендикуляре
2.6. Пространства с мерой. Пространство S(T,U,u)
2.7. Пространство Lp(T, U, u)
2.8. Плотные множества в Lp(T,U, u)
Упражнения
3. Гильбертовы пространства
3.1. Определение и простейшие свойства
3.2. Примеры гильбертовых пространств
3.3. Ортогональность
3.4. Ортогональные системы элементов
3.5. Ряд Фурье по ОНС
3.6. Роль пространства l2
3.7. Примеры полных ортогональных систем
Упражнения
4. Линейные операторы и функционалы
4.1. Линейные операторы и функционалы
4.2. Пространство линейных ограниченных операторов
4.3. Принцип равномерной ограниченности
4.4. Обратный оператор
Упражнения
5. Сопряженное пространство
5.1. Продолжение линейного ограниченного функционала
5.2. Следствия теоремы Банаха - Хана
5.3. Общий вид линейных непрерывных функционалов
5.4. Сопряженное пространство. Слабая сходимость
5.5. Сопряженный оператор
Упражнения
6. Вполне непрерывные операторы
6.1. Свойства линейного непрерывного оператора
6.2. Вполне непрерывные операторы
6.3. Важные примеры
6.4. Подпространство вполне непрерывных операторов
6.5. Другие свойства вполне непрерывных операторов
Упражнения
7. Спектр линейного оператора
7.1. Спектр линейного ограниченного оператора
7.2. Спектр вполне непрерывного оператора
7.3. Спектр самосопряженного вполне непрерывного оператора
Упражнения
8. Линейные уравнения в банаховых пространствах
8.1. Постановка задачи. Примеры
8.2. Первая теорема Фредгольма
8.3. Биортогональные системы
8.4. Вторая теорема Фредгольма
8.5. Третья теорема Фредгольма
8.6. Альтернатива Фредгольма
Упражнения
9. Дифференцирование нелинейных отображений
9.1. Функции со значениями в банаховых пространствах
9.2. Дифференцирование по Фреше
9.3. Примеры нахождения производной Фреше
9.4. Свойства производной Фреше
9.5. Формула линеаризации. Метод Ньютона
9.6. Производная и дифференциал Гато
9.7. Производные и дифференциалы Фреше высших порядков
Упражнения
10. Решение упражнений
1
2
3
4
5
6
7
8
9
11. Дополнения.
1. Доказательство неравенств
2. Индивидуальные домашние задания
Список литературы.
Рейтинг: | 4.8 баллов / 2537 оценок |
Формат: | Книга |
Уже скачали: | 12783 раз |
Нам показалось, что Книги ниже Вас заинтересуют не меньше. Эти издания Вы так же можете скачивать и читать совершенно бесплатно на сайте!
Название: Серия научно-популярных изданий АН СССР /259 книг Автор: Сборник Формат: Смешанный Размер: 1.55 Gb Качество: Отличное Язык: Русский Год издания: 1971-1991 Серия научно-популярных изданий АН . . .
Название: Новый фантастический боевик /13 книг Автор: Сборник Формат: Смешанный Размер: 55.36 MB Качество: Отличное Язык: Русский Год издания: 2013 В этой серии «Новый фантастический боевик». предпола . . .
Название: Знаменская Алина - Собрание /12 книг Автор: Знаменская Алина Страниц: Более 1000 Формат: Смешанный Размер: 22 Mb Качество: Отличное Язык: Русский Год издания: 2004-2012 Автор о себе: Родилас . . .
Название: Cборник моделей вертолетов из бумаги /15 шт. Автор: Коллектив Формат: PDF Размер: 90.05 Mb Качество: Отличное Язык: Русский Год издания: 2013 Вашему вниманию представлен сборник различных мо . . .
Название: Вольнов Сергей - Сборник /14 книг Автор: Сергей Вольнов Формат: Смешанный Размер: 29 mb Качество: Отличное Язык: Русский Год издания: 2013 Публикуется автор в популярных сериях "Звёздный Лаб . . .
Название: Большая поваренная книга Автор: Гилярова И.Н. Формат: PDF Размер: 39,87 мб Качество: Отличное Язык: Русский Год издания: 2008 Вкусная и полезная еда - не только праздник в доме, но еще отмен . . .
Название: Грифон Автор: Евгений Щепетнов Страниц: 416 Формат: Смешанный Размер: 11,0 Mb Качество: Отличное Язык: Русский Жанр: Фэнтези Год издания: 2013 Что будет, если в нашей реальности случится маг . . .
Название: Играй победу! Путь Империи Автор: Воронков Александр, Мащенко Владимир Страниц: 256 Формат: Смешанный Размер: 11,55 мб Качество: Отличное Язык: Русский Год издания: 2013 Как изменит ход исто . . .
Название: Энциклопедия супов. Всё о секретах приготовления Автор: Сергей Кашин Формат: PDF Размер: 5.2 Мб Качество: Отличное Язык: Русский Год издания: 2012 В каждой семье, у каждой хозяйки есть свой . . .
Название: Всё сама! Вяжем, плетём, вышиваем № 5 2013 Автор: коллектив Страниц: 52 Формат: JPG Размер: 61,5 Мб Качество: Отличное Язык: Русский Жанр: Рукоделие Год издания: 2013 Ежемесячный журнал по р . . .
Если вы хотите скачивать книги, журналы и аудиокниги бесплатно, без рекламы и без смс, оставлять комментарии и отзывы, учавствовать в различных интересных мероприятиях, получать скидки в книжных магазинах и многое другое, то Вам необходимо зарегистрироваться в нашей Электронной Библиотеке.
К сожалению, в нашей Бесплатной Библиотеке пока нет отзывов о Книге Функциональный анализ, Лекции и упражнения, Дерр В.Я., 2013. Помогите нам и другим читателям окунуться в сюжет Книги и узнать Ваше мнение. Оставьте свой отзыв или обзор сейчас, это займет у Вас всего-лишь несколько минут.