Энциклопедия элементарной математики, Том 2, Алгебра, Александров П.С., Маркушевич А.И., Хинчин А.Я., 1951


Книга Энциклопедия элементарной математики, Том 2, Алгебра, Александров П.С., Маркушевич А.И., Хинчин А.Я., 1951

Энциклопедия элементарной математики, Том 2, Алгебра, Александров П.С., Маркушевич А.И., Хинчин А.Я., 1951.
   Книга состоит из трех статей. Первый раздел дает изложение основ линейной алгебры (включая теорию определителей) и освещает с единой и общей точки зрения ряд разрозненных фактов школьного курса, кроме того, приводит к обобщению и углублению некоторых геометрических понятий (вектор, пространство, движение и др.). Второй раздел излагает теорию многочленов от одного и многих переменных и вопросы решения алгебраических уравнений в радикалах. В частности, здесь рассматривается важный для элементарной математики вопрос об условиях разрешимости алгебраических уравнений в квадратных радикалах. В третьем разделе, строго говоря, к алгебре относится лишь первая глава, включающая общий способ Лобачевского для решения алгебраического уравнения любой степени с численными коэффициентами. В целом же раздел представляет весьма полную сводку важнейших методов численного и графического решения алгебраических и трансцендентных уравнений.
   Школьный курс алгебры представляет собой своеобразное соединение сведений из различных отделов математики. Сюда входят: обобщение понятия числа (последовательное построение системы рациональных, действительных и, наконец, комплексных чисел), отнесённое нами к арифметике (см. статью И. В. Проскурякова в первой книге); изучение кольца многочленов и поля рациональных функций (охватывающее так называемые тождественные преобразования рациональных выражений) и решение алгебраических уравнений в простейших случаях, т. е. собственно алгебраический материал, отнесённый к настоящей книге; сведения о некоторых элементарных неалгебраических функциях — степенной, показательной, логарифмической, о пределах, последовательностях и простейшем ряде (геометрическая прогрессия), т. е. материал из области анализа (см. третью книгу настоящего издания), и, наконец, элементы комбинаторики, отнесённые нами в шестую книгу, где читатель найдёт также и основные сведения из теории вероятностей. Таким образом, читатель, заинтересованный научными основами школьного курса алгебры, должен знать, что он найдёт эти основы не в одной, а в нескольких книгах «Энциклопедии элементарной математики» и именно в книгах первой, второй, третьей и шестой, озаглавленных «Арифметика», «Алгебра», «Анализ» и «Разные вопросы».
Настоящая книга состоит из трёх статей. Статья А. И. Узкова даёт изложение основ того раздела математики (так называемой линейной алгебры), который вырос из теории систем алгебраических уравнений первой степени (линейных уравнений). Раздел этот (включающий, в частности, теорию определителей) освещает с единой и общей точки зрения ряд разрозненных фактов школьного курса и, кроме того, приводит к такому обобщению и углублению некоторых геометрических понятий (вектор, пространство, движение и др.), которое уже успело завоевать себе широкую область приложений.
Содержание
Предисловие
Векторные пространства и преобразования
(А.И.Узков)
Глава I. Определители и решение линейных уравнений.
§ 1. Векторы на плоскости.
§ 2. Числовые векторы. Определители любого порядка.
§ 3. Свойства определителя, вытекающие из его определения.
§ 4. Перестановки. Выражение определителя порядка n.
§ 5. Дальнейшие свойства определителя.
§ 6. Разложение определителя по элементам ряда. Вычисление определителей.
§ 7. Решение систем уравнения.
Глава II. Векторные пространства и исследование систем линейных уравнений.
§ 8. Векторные пространства. Абстрактная точка зрения.
§ 9. Простейшие свойства операций над векторами.
§ 10. Линейная зависимость векторов.
§ 11. Подпространства.
§ 12. Применение к системам уравнений.
§ 13. Базис пространства. Координаты.
§ 14. Ранг произвольной системы векторов.
§ 15. Решение произвольных систем линейных уравнений.
§ 16. Геометрическая интерпретация. Системы с тремя неизвестными.
§ 17. Применение к системам уравнений высших степеней.
§ 18. Дополнительные замечания.
Глава III. Линейные преобразования плоскости и трёхмерного пространства.
§ 19. Метрика. Скалярное произведение векторов.
§ 20. Преобразование координат.
§ 21. Операции над матрицами.
§ 22. Линейные преобразования.
§ 23. Представление линейных преобразований матрицами.
§ 24. Геометрические свойства линейных преобразований и свойства представляющих их матриц.
§ 25. Симметрические преобразования. Случай плоскости.
§ 26. Симметрические преобразования трёхмерного пространства.
§ 27. Представление произвольного линейного преобразования произведением ортогонального и симметрического.
§ 28. Упрощение уравнений линий и поверхностей второго порядка.
Литература.
Кольцо многочленов и поле рациональных функций.
(Л.Я.Окунев)
Глава I. Кольцо многочленов от одного неизвестного.
§ 1. Кольцо многочленов.
§ 2. Свойства делимости многочленов от одного неизвестного.
§ 3. Деление на линейный двучлен x-a. Корни многочленов.
§ 4. Многочлены над полем рациональных чисел.
§ 5. Разложение многочленов на неприводимые множители над полем рациональных чисел. Признак неприводимости.
§ 6. Основная теорема алгебры.
§ 7. Проблема решения уравнений в радикалах. Двучленные уравнения.
§ 8. Уравнения второй и третьей степеней.
§ 9. Уравнение четвёртой степени.
§ 10. Алгебраическое расширение и другая постановка проблемы решения уравнений в радикалах.
Глава II. Кольцо многочленов от нескольких неизвестных и поле рациональных функций.
§ 11. Кольцо многочленов от нескольких неизвестных.
§ 12. Поле алгебраических дробей.
§ 13. Симметрические многочлены.
§ 14. Некоторые приложения теории симметрических многочленов.
Глава III. О решении алгебраических уравнений в радикалах.
§ 15. Подстановки.
§ 16. О неразрешимости уравнений выше четвёртой степени в радикалах.
§ 17. Группа алгебраического уравнения.
§ 18. Уравнения с симметрической группой.
§ 19. О разрешимости алгебраических уравнений в квадратных радикалах.
§ 20. О разрешимости в квадратных радикалах уравнений 3-й и 4-й степеней.
Литература.
Численные и графические методы решения уравнений.
(А.П.Доморяд)
Введение.
Глава I. Решение алгебраических уравнений.
§ 1. Постановка задачи.
§ 2. Определение границ действительных корней.
§ 3. Отделение корней.
§ 4. Способ Горнера.
§ 5. Способ Лагранжа.
§ 6. Способ Лобачевского.
Задачи к главе I.
Глава II. Решение трансцендентных уравнений.
§ 7. Способ линейного интерполирования и способ Ньютона.
§ 8. Обобщение способа Ньютона.
§ 9. Способ итерации.
§ 10. Различные способы извлечения корней из чисел.
Задачи к главе II.
Глава III. Решение систем уравнений.
§ 11. Способ Ньютона.
§ 12. Способ итерации.
§ 13. Замечания о вычислении мнимых корней алгебраических уравнений.
Задачи к главе III.
Глава IV. Графические методы.
§ 14. Уравнения с одним неизвестным.
§ 15. Решение уравнений с помощью номограмм.
§ 16. Решение систем уравнений.
Задачи к главе IV.
Добавления.
1. Краткие исторические сведения.
2. Советы преподавателям и рекомендуемая литература.
Алфавитный указатель.

Рейтинг: 4.8 баллов / 2537 оценок
Формат: Книга
Уже скачали: 12828 раз



Похожие Книги

Нам показалось, что Книги ниже Вас заинтересуют не меньше. Эти издания Вы так же можете скачивать и читать совершенно бесплатно на сайте!

  • Журнал Bead & Button №2 2012

    Bead & Button №2 2012

    Название: Bead & ButtonГод / месяц: 2 2012Номер: 107Формат: jpgРазмер:19.6mbЯзык: английскийПопулярный журнал посвящённый изготовлению украшений из бисераdepositfiles.com . . .

  • Журнал Автомир №10 (март 2010)

    Автомир №10 (март 2010)

    Журнал "Автомир" — специализированное автомобильное издание, целиком посвященное миру автомобилей. Проект ставит перед собой цель донести до читателя максимум полезной информации об автомобилях и обо . . .

  • Книга О природе сознания

    О природе сознания

    Название: О природе сознанияАвтор: Гарри ХантИздательство: АСТ, Институт трансперсональной психологии, Издательство К. КравчукаISBN: 5-17-022758-2Год: 2004Страниц: 555Язык: РусскийФормат: pdfРазмер: . . .

  • Книга О природе сознания

    О природе сознания

    Автор: Гарри Хант Год издания: 2004 Издательство: АСТ, Институт трансперсональной психологии, Издательство К. Кравчука Язык: русский Размер: 5,80 Мб Страниц: 555 Формат: PDFКаково соотношение ме . . .

  • Книга Master Watchmaking Lesson 32 Part I

    Master Watchmaking Lesson 32 Part I

    Название: Master Watchmaking Lesson 32 Part IАвтор: Thomas Sweazey, Byron SweazyИздательство: Chicago School of WatchmakingГод: 1962Страниц: 21Формат: PDFРазмер: 8.4МБЯзык: английскийA home study book . . .

  • Книга Introducing the Play Framework

    Introducing the Play Framework

    Год: 2011Автор: Wayne EllisЖанр: e-bookЯзык: АнглийскийФормат: PDFКачество: Изначально компьютерное (eBook)Количество страниц: 200Размер: 5.86мбОписание: Play is a revolution. The Play Framework has c . . .

  • Книга Hawker Hunter. A Comprehensive Guide

    Hawker Hunter. A Comprehensive Guide

    Автор: Paul Bradley Год издания: 2009 Формат: pdf Издат.: SAM Publications Страниц: 138 Размер: 73,4 Mb ISBN: 0955185890 Язык: Английский . . .

  • Журнал Вестник Моды для модисток № 1-12 1890

    Вестник Моды для модисток № 1-12 1890

    Название: Вестник Моды для модисток № 1-12 1890Издательство: Санкт-ПетербургГод издания: 1890Номер: № 1-12Язык: русскийCтраниц: 160Формат: PDFРазмер: 42,1 МБОписание: Русское издание французского журн . . .

  • Книга Штрафбат в космосе

    Штрафбат в космосе

    Автор: Олег Таругин, Алексей Ивакин Год издания: 2011 Язык: русский Размер: 12,73 Мб Страниц: 354 Формат: RTF"Если зовет своих мертвых Россия - значит, беда!". Когда человечество в опас . . .

  • Книга О природе сознания

    О природе сознания

    Название: О природе сознания Автор: Гарри Хант Издательство: АСТ, Институт трансперсональной психологии, Издательство К. Кравчука Страниц: 555 Формат: PDF Размер: 5.8 Мб Качество: Отличное Язык: Русск . . .


Вы не зарегистрированы!

Если вы хотите скачивать книги, журналы и аудиокниги бесплатно, без рекламы и без смс, оставлять комментарии и отзывы, учавствовать в различных интересных мероприятиях, получать скидки в книжных магазинах и многое другое, то Вам необходимо зарегистрироваться в нашей Электронной Библиотеке.

Отзывы читателей


Ой!

К сожалению, в нашей Бесплатной Библиотеке пока нет отзывов о Книге Энциклопедия элементарной математики, Том 2, Алгебра, Александров П.С., Маркушевич А.И., Хинчин А.Я., 1951. Помогите нам и другим читателям окунуться в сюжет Книги и узнать Ваше мнение. Оставьте свой отзыв или обзор сейчас, это займет у Вас всего-лишь несколько минут.