Элементарное введение в эллиптическую криптографию, Протоколы криптографии на эллиптических кривых, Болотов А.А., Гашков С.Б., Фролов А.Б., 2006


Книга Элементарное введение в эллиптическую криптографию, Протоколы криптографии на эллиптических кривых, Болотов А.А., Гашков С.Б., Фролов А.Б., 2006

Элементарное введение в эллиптическую криптографию, Протоколы криптографии на эллиптических кривых, Болотов А.А., Гашков С.Б., Фролов А.Б., 2006.
   Настоящая книга содержит описание и сравнительный анализ алгоритмов на эллиптических кривых. Изучаются протоколы эллиптической криптографии, имеющие аналоги --- протоколы на основе алгебраических свойств мультипликативной группы конечного поля, и протоколы, для которых таких аналогов нет, --- протоколы, основанные на спаривании Вейля и Тейта. В связи с этим описаны алгоритмы спаривания Вейля и Тейта и их модификации. Изложение теории сопровождается большим числом примеров и упражнений.
Книга предназначена для студентов, преподавателей вузов и специалистов в области защиты информации, прикладной математики, вычислительной техники и информатики. Она может быть полезна для лиц, связанных с кодированием и передачей информации и цифровой техникой, а также для специалистов по прикладной математике, интересующихся компьютерной алгеброй.

Скалярное умножение на суперсингулярных кривых.
Алгоритмы умножения точки Р эллиптической кривой на числовую константу к (кратко — алгоритмы вычисления к • Р), они же — алгоритмы скалярного умножения точки, являются основными в арифметике эллиптических кривых. В случае эллиптических кривых особенно удобно использовать уравновешенные систем счисления (имеющие отрицательные цифры).
Алгоритмической особенностью суперсингулярных эллиптических кривых является то, что удвоение точки для таких кривых выполняется существенно быстрее умножения, а при использовании нормальных базисов в поле — почти бесплатно. Поэтому при оценке сложности алгоритмов, основанных на аддитивных цепочках [7,8], можно учитывать только операции сложения, нс являющиеся удвоениями (как и в алгоритмах возведения в степень в нормальных базисах конечных полей). Используя описываемые ниже алгоритмы, по-возможности минимизирующие число «неудваивающих» шагов в аддитивных цепочках, можно существенно ускорить вычисления в случае, когда точка Р не известна заранее.
Если же P известна заранее и у нас достаточно памяти для хранения предварительно вычисленной таблицы, то надо применять другие алгоритмы, но в них использование суперсингулярных кривых не дает существенного выигрыша.

Рейтинг: 4.8 баллов / 2537 оценок
Формат: Книга
Уже скачали: 12759 раз



Похожие Книги

Нам показалось, что Книги ниже Вас заинтересуют не меньше. Эти издания Вы так же можете скачивать и читать совершенно бесплатно на сайте!


Вы не зарегистрированы!

Если вы хотите скачивать книги, журналы и аудиокниги бесплатно, без рекламы и без смс, оставлять комментарии и отзывы, учавствовать в различных интересных мероприятиях, получать скидки в книжных магазинах и многое другое, то Вам необходимо зарегистрироваться в нашей Электронной Библиотеке.

Отзывы читателей


Ой!

К сожалению, в нашей Бесплатной Библиотеке пока нет отзывов о Книге Элементарное введение в эллиптическую криптографию, Протоколы криптографии на эллиптических кривых, Болотов А.А., Гашков С.Б., Фролов А.Б., 2006. Помогите нам и другим читателям окунуться в сюжет Книги и узнать Ваше мнение. Оставьте свой отзыв или обзор сейчас, это займет у Вас всего-лишь несколько минут.