Название: Аналитическая геометрия в примерах и задачах. 2005.
Автор: Бортаковский А.С., Пантелеев А.В.
Приведены основные понятия, теоремы и методы решения задач по всем разделам курса: векторной алгебре, системам координат, преобразованиям плоскости и пространства, уравнениям линий и поверхностей первого и второго порядков. Описаны некоторые приложения аналитической геометрии в механике, теории оптимизации и математическом анализе. В каждом разделе кратко изложены основные теоретические сведения, приведены решения типовых примеров и задачи для самостоятельного решения с ответами.
Для студентов технических вузов и университетов. Рекомендовано Учебно-методическим объединением высших учебных заведений Российской Федерации по образованию в области авиации, ракетостроения и космоса в качестве учебного пособия для студентов высших технических учебных
Книга включает теоретические основы и методы решения задач аналитической геометрии и охватывает основные разделы курса, читаемого на факультете "Прикладная математика и физика" Московского авиационного института.
Аналитическая геометрия, как правило, изучается во втузе совместно с линейной алгеброй [10] и традиционно содержит следующие разделы: векторную алгебру, системы координат, преобразования плоскости и пространства, уравнения линий и поверхностей первого и второго порядков. Объем и глубина излагаемого материала варьируется в зависимости от специальности: более полно для конструкторских специальностей и для специальности "Прикладная математика", в сокращенном варианте - для инженерных (но не конструкторских) специальностей, а также экономистов.
ОГЛАВЛЕНИЕ
Предисловие 6
Введение 7
В.1. Основные метрические понятия 7
В.2. Равенство и подобие геометрических фигур 9
В.3. Бинарные отношения 11
Глава 1. Векторная алгебра 15
1.1. Векторы и линейные операции над векторами 15
1.1.1. Вектор, его направление и длина 15
1.1.2. Линейные операции над векторами 19
1.1.3. Линейная зависимость и линейная независимость векторов... 24
1.2. Проекции векторов и их свойства 26
1.2.1. Отношение коллинеарных векторов 26
1.2.2. Проекции векторов на прямую и на плоскость 28
1.2.3. Ортогональные проекции. Угол между векторами 34
1.3. Базис и координаты векторов 40
1.3.1. Базис на прямой. Координата вектора на прямой 40
1.3.2. Базис на плоскости. Координаты вектора на плоскости 42
1.3.3. Базис в пространстве. Координаты вектора в пространстве.... 45
1.3.4. Линейные операции над векторами в координатной форме.... 47
1.3.5. Ортогональный и ортонормированный базисы 50
1.4. Скалярное произведение векторов 54
1.4.1. Определение скалярного произведения 54
1.4.2. Свойства скалярного произведения 56
1.4.3. Выражение скалярного произведения через координаты векторов 59
1.5. Векторное и смешанное произведения векторов 69
1.5.1. Векторное произведение и его свойства 69
1.5.2. Смешанное произведение и его свойства 74
1.5.3. Ориентированные площади и объемы 79
1.5.4. Двойное векторное произведение и его свойства 83
1.6. Типовые задачи векторной алгебры 86
1.6.1. Применение векторов в задачах на аффинные свойства фигур 86
1.6.2. Метрические приложения произведений векторов 96
1.6.3. Приложения векторной алгебры в механике 105
Глава 2. Системы координат 121
2.1. Аффинные системы координат 121
2.1.1. Аффинные системы координат на прямой, на плоскости, в пространстве 121
2.1.2. Прямоугольные системы координат 124
2.2. Аффинные преобразования координат 128
2.2.1. Преобразование координат вектора при замене базиса 128
2.2.2. Преобразование координат точки при замене системы координат 132
2.2.3. Преобразования прямоугольных координат на плоскости и в пространстве 135
2.2.4. Аффинные преобразования плоскости и пространства 144
2.3. Полярная, цилиндрическая и сферическая системы координат 163
2.3.1. Полярная система координат 163
2.3.2. Цилиндрическая система координат 169
2.3.3. Сферическая система координат 171
2.4. Координатное пространство Rn 174
2.4.1. Точки, векторы и операции над ними 174
2.4.2. Линейные и аффинные подпространства 179
2.4.3. Скалярное произведение 183
2.4.4. Преобразования систем координат 187
Глава 3. Алгебраические линии на плоскости 198
3.1. Способы задания геометрических мест точек на плоскости 199
3.1.1. Общие уравнения геометрических мест точек 199
3.1.2. Параметрические уравнения геометрических мест точек 204
3.1.3. Алгебраические уравнения линий на плоскости 205
3.2. Алгебраические линии первого порядка (прямые на плоскости).... 209
3.2.1. Уравнения прямой, проходящей через заданную точку перпендикулярно заданному вектору 209
3.2.2. Уравнения прямой, проходящей через заданную точку коллинеарно заданному вектору 218
3.2.3. Уравнения прямой, проходящей через две заданные точки 223
3.2.4. Уравнения прямой, проходящей через заданную точку, с данным угловым коэффициентом 226
3.2.5. Взаимное расположение прямых 227
3.2.6. Типовые задачи с прямыми на плоскости 234
3.3. Алгебраические линии второго порядка 254
3.3.1. Канонические уравнения линий второго порядка 254
3.3.2. Эллипс 268
3.3.3. Гипербола 274
3.3.4. Парабола 282
3.3.5. Классификация линий второго порядка по инвариантам 289
3.3.6. Приведение уравнения линии второго порядка к каноническому виду 315
3.3.7. Применение линий первого и второго порядков в задачах на экстремум функций 326
Глава 4. Алгебраические поверхности в пространстве 33S
4.1. Способы задания геометрических мест точек в пространстве 335
4.1.1. Общие уравнения геометрических мест точек 336
4.1.2. Параметрические уравнения геометрических мест точек 343
4.1.3. Алгебраические уравнения поверхностей 345
4.2. Алгебраические поверхности первого порядка (плоскости) 348
4.2.1. Уравнения плоскости, проходящей через заданную точку перпендикулярно заданному вектору 348
4.2.2. Уравнения плоскости, проходящей через заданную точку и компланарной двум неколлинеарным векторам 356
4.2.3. Уравнения плоскости, проходящей через три заданные точки 360
4.2.4. Взаимное расположение плоскостей 363
4.2.5. Типовые задачи с плоскостями 369
4.3. Уравнения прямых в пространстве 375
4.3.1. Уравнение прямой как линии пересечения двух плоскостей 375
4.3.2. Уравнение прямой, проходящей через заданную точку коллинеарно заданному вектору 376
4.3.3. Уравнение прямой, проходящей через две заданные точки 381
4.3.4. Взаимное расположение прямых в пространстве 383
4.3.5. Взаимное расположение прямой и плоскости 387
4.3.6. Типовые задачи с прямыми в пространстве 389
4.4. Алгебраические поверхности второго порядка 394
4.4.1. Канонические уравнения поверхностей второго порядка 394
4.4.2. Эллипсоиды 410
4.4.3. Гиперболоиды 413
4.4.4. Конусы 416
4.4.5. Параболоиды 420
4.4.6. Классификация поверхностей второго порядка по инвариантам 423
4.4.7. Приведение уравнения поверхности второго порядка к каноническому виду 451
4.4.8. Применение поверхностей первого и второго порядков в задачах на экстремум функций 472
Приложение 483
Литература 495
Рейтинг: | 4.8 баллов / 2537 оценок |
Формат: | Книга |
Уже скачали: | 12813 раз |
Нам показалось, что Книги ниже Вас заинтересуют не меньше. Эти издания Вы так же можете скачивать и читать совершенно бесплатно на сайте!
Название: Химия - Ответы на экзаменационные билеты - 9 класс Автор: Хомченко А.В. 2010. В данном пособии приводятся ответы на все вопросы экзаменационных билетов по Химии, предлагаемых М . . .
Введение в математическое моделирование химических процессов, практикум к элективному курсу для 10-11 классов, Перегудов А.В., Пушкарева Т.П., 2013. § 3. Теоретические основы математического моделиров . . .
Вопросы, упражнения и задачи по органической химии с ответами и решениями, 10-11 класс, Вивюрский В.Я., 2002. Цель настоящей книги — помочь учащимся прочно усвоить основные понятия курса органи . . .
Задачник по химии, 10 класс, Кузнецова Н.Е., Левкин А.Н., 2011. Задачник включает типовые расчётные задачи, задания с элементами качественного анализа, творческие и повышенного уровня сло . . .
Контрольные и проверочные работы по химии, 10-11 класс, Гара Н.Н., Зуева М.В., 2001. Настоящее пособие состоит из текстов проверочных и контрольных работ по курсу химии, изучаемому в 10— . . .
Контрольные и проверочные работы по химии - 10-11 классы - Методическое пособие - Гара Н.Н., Зуева М.В. - 2001 Настоящее пособие состоит из текстов проверочн . . .
Органическая химия. Полезные сведения для школьников и учителей - теория, история, задачи и решения - Гуревич П.А., Кабешов М.А. - 2004 Предлагаемая вниманию читателя книга ОРГАНИЧЕСКАЯ ХИМИЯ: история . . .
Сборник задач по органической химии - 10-11 классы - Маршанова Г.Л. - 2000 Сборник содержит свыше 300 различных задач, соответствующих основным разделам программы . . .
Название: Решение задач по химии - Справочник школьника. Автор: Берман Н.И. Справочное пособие предназначено для учащихся, их родителей, школьных учителей, абитуриентов. Издание содержит решения типов . . .
Тематические тесты по органической химии, Углеводороды, 10 класс, Боровских Т.А., 2013. Книга предназначена для проверки знаний учащихся по курсу химии 10 класса. Издание ориентировано на . . .
Если вы хотите скачивать книги, журналы и аудиокниги бесплатно, без рекламы и без смс, оставлять комментарии и отзывы, учавствовать в различных интересных мероприятиях, получать скидки в книжных магазинах и многое другое, то Вам необходимо зарегистрироваться в нашей Электронной Библиотеке.
К сожалению, в нашей Бесплатной Библиотеке пока нет отзывов о Книге Аналитическая геометрия в примерах и задачах - Бортаковский А.С., Пантелеев А.В.. Помогите нам и другим читателям окунуться в сюжет Книги и узнать Ваше мнение. Оставьте свой отзыв или обзор сейчас, это займет у Вас всего-лишь несколько минут.