Алгебраическая геометрия для всех, Рид М., 1991.
Автор, известный английский математик, поставил себе целью преодолеть страх математиков перед алгебраической геометрией, подобный страху нематематиков перед математикой. Примеры, задачи, рисунки и мотивировки занимают в книге больше места, чем формальный аппарат теории. Автор осторожно доводит читателя до содержательных результатов теории проективных алгебраических многообразий и оставляет его после критического обсуждения обобщений и обоснований (пучки, схемы и т. п.). Секреты специалистов, обычно сообщаемые лишь ученикам наедине, опубликованы здесь в открытую.
Для математиков всех специальностей от студентов-младшекурсников до алгебраических геометров, а также физиков-теоретиков.
История и социологический аспект современной алгебраической геометрии.
Алгебраическая геометрия за последние 30 лет заняла в математике приблизительно такое же положение, какое занимает сама математика в окружающем мире. Ее уважают и боятся куда больше, чем понимают. В то же время те «практические» вопросы, которые мне задают английские коллеги или старшекурсники Уорикского университета, обычно настолько элементарны, что покрываются либо этой книжкой, либо книгой [Атья, Макдональд]. Дальнейшее описание современного развития предмета — всего лишь попытка объяснить этот парадокс. При этом я никак не претендую на объективность.
Алгебраическую геометрию в XIX в. питали несколько разных источников. Прежде всего это — собственно геометрическая традиция, т. е. проективная геометрия (и начертательная геометрия, представлявшая во времена Наполеона большой интерес для военных), изучение кривых и поверхностей как таковых, геометрия конфигураций. Затем это — теория функций комплексного переменного, представление о компактной римановой поверхности как об алгебраической кривой и ее чисто алгебраическое построение через поле функций. Над всем этим — глубокая аналогия между алгебраическими кривыми и кольцом целых чисел числового поля, а также потребность в алгебраическом и геометрическом языке для теории инвариантов, сыгравшей важную роль в развитии абстрактной алгебры в начале XX столетия.
Оглавление
Предисловие к русскому переводу
Предисловие
§ 0. Неформальное введение
Почему же алгебраическая геометрия? Проблема выбора материала; различные геометрические категории, необходимость привлечения коммутативной алгебры, частично определенная функция; репутация автора. Необходимые предварительные сведения, взаимоотношение курса с различными предметами, список рекомендуемых книг
Глава 1. Поиграем с плоскими кривыми
§ 1. Плоские коники
Общее представление о Р2 и однородных координатах; соотношение между А2 и Р2; параметризация. Каждая гладкая коника в Р2 изоморфна Р1. Простые случаи теоремы Безу: прямая пересекает кривую степени d в d точках, коника пересекает кривую степени d в 2d точках. Линейная система коник, проходящих через точки Pi,..., Рn
§ 2. Кубики и групповой закон
Кривая (у2 = х(х - )(х - X)) не может быть рационально параметризована. Линейные системы Sd(Pi,..., Рn); пучок кубик, проходящих через 8 точек «в общем положении». Групповой закон на кубике. «Таинственная» гексаграмма Паскаля
Добавление к главе 1. Кривые и их род
Топология неособых плоских комплексных кубик. Неформальное обсуждение рода кривой: топология, дифференциальная геометрия, модули, теория чисел, Морделл-Вейль-Фальтингс
Глава 2. Категория аффинных многообразий
§ 3. Аффинные многообразия и Nullstellensatz
Нётеровы кольца, теорема Гильберта о базисе; соответствия V и I, неприводимые алгебраические множества, топология Зарисского, формулировка Nullstellensatz. Неприводимая гиперповерхность. Нормализация Нётер и доказательство Nullstellensatz; редукция к случаю гиперповерхности
§ 4. Функции на многообразиях
Координатное кольцо и полиномиальные отображения, морфизмы и изоморфизмы, аффинные многообразия. Поле рациональных функций и рациональные отображения, доминантные рациональные отображения и композиция рациональных отображений. Стандартные открытые множества. Закон сложения на эллиптической кривой является морфизмом.
Глава 3. Приложения
§ 5. Проективная и бирациональная геометрии
Мотивировка: существуют многообразия, не содержащиеся ни в каком аффинном многообразии. Однородные соответствия V и I. Проективное и аффинное. Примеры: квадратичные поверхности, поверхность Веронезе. Бирациональная эквивалентность, рациональные многообразия. Каждое многообразие бирационально эквивалентно гиперповерхности. Произведения
§ 6. Касательное пространство и неособость, размерность
Мотивировка: теорема о неявной функции, многообразия и гладкие многообразия. Определение аффинного касательного пространства. Множество неособых точек является плотным. Касательное пространство и m/m1, инвариантное определение касательного пространства. Размерность X равна tr degk k(Х). Разрешение особенностей с помощью раздутий
§ 7. 27 прямых на кубической поверхности
Прямые на неособой кубической поверхности S. Доказательство существования прямой методом исключения. Пять пар прямых, пересекающих данную прямую. S рациональна. Классическая конфигурация из 27 прямых. Гессиан. Случай, когда все прямые рациональны
§ 8. Заключительные комментарии
История и социологический аспект. Выбор тем, высоконаучные комментарии и технические замечания. Вместо предисловия. Благодарности
Предметный указатель.
Рейтинг: | 4.8 баллов / 2537 оценок |
Формат: | Книга |
Уже скачали: | 12828 раз |
Нам показалось, что Книги ниже Вас заинтересуют не меньше. Эти издания Вы так же можете скачивать и читать совершенно бесплатно на сайте!
Название: Приглашение к чаю: Бисквиты, торты, пирожные.Автор: коллективСтраниц: 38Язык: РусскийФормат: PDFКачество: отличноеРазмер: 19 МбОписание:Бисквитные, песочные, с кремом и фруктами, покрытые шо . . .
Название: Coole Schneemänner aus Papier und HolzСтраниц: 27Формат: JpegРазмер: 2Mb (добавлено 3% на восстановление)Качество: хорошееЯзык: немецкийАппликации и другие подели из бумаги.Скачать с De . . .
Название: Sequencing. Cut and Paste Activities (Последовательность событий)Страниц: 23Формат: DjvuРазмер: 1,10Mb (добавлено 3% на восстановление)Качество: хорошееЯзык: английскийСитуации в книге не за . . .
Название: Детская неврология.Авторы: БАДАЛЯН Л. О. Город: М.Издательство: МедицинаГод: 1984Страниц: 576 с, ил.Язык: РусскийФормат: djvu / rar + 3%Размер: 11,87 mbКачество: 300 dpi Третье издание учеб . . .
Издательство: ПищепромиздатДата публикации: 1954Язык: РусскийКоличество страниц: 434Формат: DJVUРазмер файла: 8 Mb Книга тех времен, когда кушали слова, а запивали картинками. depositfiles.com . . .
Название: Духовно-энергетические механизмы развития болезней человеческого телаАвтор: Гордомысова Г.В.Издательство: ЕкатеринбургГод: 2008Страниц: 38Формат: rtf+pdfРазмер: 3.45 Мб, 17.86 МбКачество: 60 . . .
Фармакотерапія внутрішніх захворювань та їх невідкладних станів: Навч. посібник Авторы: О. М. Біловол, І. К. Латогуз, В. Ф. МоскаленкоГород: X.Издательство: ОсноваГод: 2001Страниц: 240 с.Язык: Украинс . . .
Автор:А.Л. Тихомиров, С.И. СарсанияНазвание: Воспалительные заболевания женских половых органов. Брошюра практического гинеколога.Издательство: МоскваГод: 2007Формат: djvuРазмер: 5 МбКафедра акушерств . . .
Название: Верни себе зрение Лекции В.Г.Жданова в 6-ти частяхАвтор: В.Г.ЖдановГод: 2007-2008Страниц: 260Язык: русскийФормат: DOCКачество: хорошееРазмер: 2,27Мб Курс лекций по восстановлению зрения . . .
Название: Исцеление медьюАвтор: коллективГод: 2004Страниц: 14Язык: русскийФормат: PDFКачество: хорошееРазмер: 2,51Мб Эта брошюра поможет вам преодолеть многие недуги без таблеток, порошков, маз . . .
Если вы хотите скачивать книги, журналы и аудиокниги бесплатно, без рекламы и без смс, оставлять комментарии и отзывы, учавствовать в различных интересных мероприятиях, получать скидки в книжных магазинах и многое другое, то Вам необходимо зарегистрироваться в нашей Электронной Библиотеке.
К сожалению, в нашей Бесплатной Библиотеке пока нет отзывов о Книге Алгебраическая геометрия для всех, Рид М., 1991. Помогите нам и другим читателям окунуться в сюжет Книги и узнать Ваше мнение. Оставьте свой отзыв или обзор сейчас, это займет у Вас всего-лишь несколько минут.