Алгебра и начало анализа, 11 класс, Нелин Е.П., 2006.
Предлагаемый учебник для 11 класса является продолжением учебника «Алгебра и начала анализа» для 10 класса. В 11 классе рассматривается принципиально новая часть курса — начала анализа. Математический анализ (или просто анализ) — отрасль математики, сформированная в XVIII в., которая сыграла значительную роль в развитии природоведения: появился мощный, достаточно универсальный метод исследования функций, которые возникают во время решения разнообразных прикладных задач. Также в 11 классе будут рассмотрены элементы комбинаторики, теории вероятностей и статистики, которые находят широкое применение в различных отраслях знаний.
Числовые множества.
В курсе математики вы встречались с разными числами: натуральными, целыми, рациональными, иррациональными, действительными. Представление о числах у человечества складывалось постепенно, под воздействием требований практики. Например, натуральные числа появились в связи с необходимостью подсчета предметов. Но для того чтобы дать ответ на вопрос «Сколько спичек в пустой коробке из-под спичек?», множества натуральных чисел N = {1;2;3;...} недостаточно — для этого необходимо иметь еще и число нуль. Присоединяя к множеству N натуральных чисел число 0, получаем множество неотрицательных целых чисел. Его часто обозначают Z0 = {0; 1; 2; 3; ...}. Одних только неотрицательных целых чисел оказалось недостаточно для решения задач практики (а следовательно, и математических задач, отображающих заданную реальную ситуацию). Так, для того чтобы охарактеризовать температуру воздуха выше и ниже нуля или движение тела в противоположных направлениях, необходимы противоположные натуральным числа, то есть отрицательные числа. Для натурального числа n противоположным считается число -n, а для числа -n противоположным считается число n. Нуль считают противоположным самому себе.
Натуральные числа, числа, противоположные натуральным, и число нуль составляют множество Z целых чисел.
СОДЕРЖАНИЕ
Предисловие для учащихся 3
Предисловие для учителя 4
Раздел 1. ПРОИЗВОДНАЯ И ЕЕ ПРИМЕНЕНИЕ
§ 1 Действительные числа и их свойства 6
§ 2 Понятия предела функции в точке и непрерывности функции 18
§ 3 Понятие производной, ее механический и геометрический смысл 29
§ 4 Правила вычисления производных. Производная сложной функции 45
§ 5 Производные элементарных функций 54
§ 6 Применение производной к исследованию функций 61
6.1. Применение производной к нахождению промежутков возрастания и убывания функции и экстремумов функции 61
6.2. Общая схема исследования функции для построения ее графика 81
6.3. Наибольшее и наименьшее значения функции 98
§ 7 Понятия и основные свойства предела функции и предела последовательности 110
7.1. Доказательство основных теорем о пределах 110
7.2. Односторонние пределы 119
7.3. Непрерывные функции 121
7.4. Предел функции на бесконечности. Бесконечный предел функции. Предел последовательности 123
7.5. Предел отношения sinx/x при х —> 0 126
7.6. Практическое вычисление предела функции 128
§ 8 Асимптоты графика функции 131
§ 9 Производные обратных тригонометрических функций. Доказательство тождеств с помощью производной 137
§ 10 Вторая производная. Производные высших порядков. Понятие выпуклости функции 141
§ 11 Применение производной к решению уравнений и неравенств 152
11.1. Применение производной к решению уравнений и неравенств 152
11.2. Применение производной к доказательству неравенств 164
§ 12 Применение производной к решению задач с параметрами 169
§ 13 Дифференциал функции 175
Дополнительные упражнения к разделу 1 178
Сведения из истории 182
Раздел 2. ИНТЕГРАЛ И ЕГО ПРИМЕНЕНИЕ
§ 14 Первообразная и ее свойства 186
§ 15 Определенный интеграл и его применение 198
15.1. Геометрический смысл и определение определенного интеграла 198
15.2. Вычисление площадей и объемов с помощью определенных интегралов 209
§ 16 Простейшие дифференциальные уравнения 216
Дополнительные упражнения к разделу 2 221
Сведения из истории 223
Раздел 3.ЭЛЕМЕНТЫ КОМБИНАТОРИКИ, ТЕОРИИ ВЕРОЯТНОСТЕЙ И СТАТИСТИКИ
§ 17 Множества и операции над ними 224
§ 18 Элементы комбинаторики и бином Ньютона 231
18.1. Элементы комбинаторики 231
18.1.1. Правила суммы и произведения. Упорядоченные множества. Размещения 233
18.1.2. Перестановки 239
18.1.3. Сочетания 243
18.2. Бином Ньютона 248
§ 19 Основные понятия теории вероятностей 255
19.1. Понятия случайного события и случайного эксперимента. Статистическое определение вероятности 255
19.2. Операции над событиями 266
19.3. Аксиоматическое построение теории вероятностей. Классическое определение вероятности 272
19.4. Геометрическое определение вероятности 282
19.5. Условные вероятности 288
19. 6. Независимые события 292
19. 7. Схема Бернулли. Закон больших чисел 297
19.8. Понятия случайной величины и ее распределения 303
19. 9. Полигоны и гистограммы частот 309
§ 20 Введение в статистику 316
20.1. Понятие о статистике. Генеральная совокупность и выборка 316
20.2. Статистические характеристики рядов данных. Математическое ожидание случайной величины 322
20.3. Отклонение от среднего значения, дисперсия, среднее квадратическое отклонение 334
20. 4. Нормальное распределение. Правило трех сигм 336
§ 21 Соединения с повторениями.
Решение более сложных комбинаторных задач 342
21.1. Соединения с повторениями 342
21.1.1. Размещения с повторениями 343
21.1.2. Перестановки с повторениями 347
21.1.3. Сочетания с повторениями 349
21.2. Решение более сложных комбинаторных задач 351
§ 22 Комплексные числа 355
22.1. Алгебраическая форма комплексного числа 355
22.2. Тригонометрическая форма комплексного числа 365
Дополнительные упражнения к разделу 3 375
Сведения из истории 379
Справочный материал 383
Ответы и указания к упражнениям 401
Обозначения, встречающиеся в учебнике 409
Предметный указатель 410.
Рейтинг: | 4.8 баллов / 2537 оценок |
Формат: | Книга |
Уже скачали: | 12783 раз |
Нам показалось, что Книги ниже Вас заинтересуют не меньше. Эти издания Вы так же можете скачивать и читать совершенно бесплатно на сайте!
Коллектив Издательство: Us Weekly LLC Год издания: 2013 Страниц: 112 Язык: английский Формат: PDF Размер: 49.9 Мб Us Weekly вглядывается в ум (и гардеробы) крупнейших звезд, и сопровождае . . .
Коллектив Год издания: 2013 Страниц: 174 Язык: английский Формат: PDF Размер: 69.7 Мб Women's Health — самый узнаваемый женский журнальный бренд категории lifestyle. Пишет о том, что ты мо . . .
Коллектив Год издания: 2013 Страниц: 158 Язык: английский Формат: PDF Размер: 58.8 Мб Журнал frankie для таких как ты - умных, веселых, саркастических, милых, дружелюбных, грубых и артисти . . .
Maneesh Sethi Издательство: Course Technology PTR Год издания: 2005 Страниц: 400 ISBN: 1592008348 Язык: английский Формат: PDF Размер: 4,6 Мб Product Description: You've played plenty of g . . .
Издательство: Россия Год издания: 2010 Страниц: 01:41:12 Язык: русский Формат: Видео Размер: 1,26 Гб Курс предназначен для всех, у кого есть четвероногие друзья, кто хотел бы первоклассно ф . . .
Коллектив авторов Издательство: Россия Год издания: 2012 Страниц: 00:35:18 Язык: русский Формат: Видео Размер: 119,17 Mb Фотошоп чаще всего применяют для создания фотореалистический изобр . . .
Peter Lubbers, Brian Albers, Frank Salim Издательство: Apress Год издания: 2010 Страниц: 304 ISBN: 1430227907 Язык: английский Формат: PDF Размер: 4.99 Мб HTML5 is here, and with it, web a . . .
Сандро Корсаро Издательство: Символ-Плюс Год издания: 2008 Страниц: 240 ISBN: 5-93286-102-9 Язык: русский Формат: PDF Размер: 69.75 Мб Сандро Корсаро, профессионал Flash-анимации. В этой к . . .
Рейес Пухол-Ксикой, Хуана Хулия Касалс Издательство: АСТ-Пресс Книга Год издания: 2003 Страниц: 130 ISBN: 5-462-00060-Х Язык: русский Формат: JPG Размер: 39,2 Мб Серия: Золотая библиотека . . .
Christopher Grover Издательство: Oreilly Год издания: 2010 Страниц: 784 ISBN: 978-1449380250 Язык: английский Формат: PDF Размер: 11.5 Мб Every chapter in this book provides step-by-step F . . .
Если вы хотите скачивать книги, журналы и аудиокниги бесплатно, без рекламы и без смс, оставлять комментарии и отзывы, учавствовать в различных интересных мероприятиях, получать скидки в книжных магазинах и многое другое, то Вам необходимо зарегистрироваться в нашей Электронной Библиотеке.
К сожалению, в нашей Бесплатной Библиотеке пока нет отзывов о Книге Алгебра и начало анализа, 11 класс, Нелин Е.П., 2006. Помогите нам и другим читателям окунуться в сюжет Книги и узнать Ваше мнение. Оставьте свой отзыв или обзор сейчас, это займет у Вас всего-лишь несколько минут.