Алгебра, Базовый курс с указаниями и решениями, ЕГЭ, Олимпиады, Экзамены в ВУЗ, Золотарева Н.Д., Попов Ю.А., Семендяева Н.Л., Федотов М.В., 2010.
Настоящее пособие составлено на основе задач вступительных экзаменов по математике в МГУ имени М. В. Ломоносова и задач единого государственного экзамена преподавателями факультета ВМК МГУ имени М. В. Ломоносова. Пособие содержит теоретический материал, подборку задач, а также идеи, указания (подсказки) и решения задач.
Рекомендуется школьникам при подготовке к сдаче единого государственного экзамена, абитуриентам при подготовке к поступлению как в МГУ, так и другие ВУЗы, учителям математики, репетиторам, руководителям кружков и факультативов, преподавателям подготовительных курсов.
Примеры.
Первый член арифметической прогрессии в два раза больше первого члена геометрической прогрессии и в пять раз больше второго члена геометрической прогрессии. Четвёртый член арифметической прогрессии составляет 50 % от второго члена арифметической прогрессии. Найти первый член арифметической прогрессии, если известно, что второй её член больше третьего члена геометрической прогрессии на 36.
Из пункта А в пункт В, находящийся на расстоянии 12 км от пункта А, по горной дороге со скоростью 6 км/час поднимается в гору пешеход. Одновременно с ним из пункта А в пункт В выехал автобус. Доехав до пункта В менее чем за один час, автобус поехал обратно навстречу пешеходу и встретил его через 12 минут после начала движения из пункта В. Найти скорость автобуса на подъёме, если известно, что она в 2 раза меньше его скорости на спуске.
Три автоматические линии выпускают одинаковую продукцию, но имеют разную производительность. Производительность всех трёх одновременно действующих линий в 1,5 раза выше производительности первой и второй линий, работающих одновременно. Сменное задание для первой линии вторая и третья линии, работая одновременно, могут выполнить на 4 ч 48 мин быстрее, чем его выполняет первая линия; это же задание вторая линия выполняет на 2 ч быстрее по сравнению с первой линией. Найти время выполнения первой линией своего сменного задания.
ОГЛАВЛЕНИЕ
От редактора 7
Предисловие 8
Часть I: Теория и задачи 11
1. Преобразование алгебраических выражений, простейшие уравнения и неравенства 11
1.1. Формулы сокращённого умножения, преобразование алгебраических выражений 11
1.2. Сравнение чисел 14
1.3. Модуль числа и алгебраического выражения, уравнения и неравенства с модулем 15
1.4. Квадратный трёхчлен, разложение квадратного трёхчлена на множители, квадратные уравнения и неравенства, теорема Виета 19
2. Рациональные и иррациональные уравнения и неравенства, простейшие системы уравнений 23
2.1. Рациональные уравнения и неравенства, метод интервалов 23
2.2. Простейшие системы уравнений. Подстановка и исключение переменных при решении систем уравнений 26
2.3. Радикалы. Иррациональные уравнения и неравенства, равносильные преобразования 29
2.4. Смешанные задачи 33
3. Преобразование тригонометрических выражений, стандартные тригонометрические уравнения 34
3.1. Соотношения между тригонометрическими функциями одного и того же аргумента, формулы двойного и половинного аргументов 34
3.2. Простейшие тригонометрические уравнения. Разложение на множители, сведение к квадратному уравнению 37
3.3. Применение тригонометрических формул для сведения уравнений к простейшим 40
3.4. Различные задачи на отбор корней 44
4. Стандартные текстовые задачи 46
4.1. Пропорциональные величины 46
4.2. Арифметическая и геометрическая прогрессии 48
4.3. Скорость, движение и время 51
4.4. Работа и производительность 55
4.5. Проценты, формула сложного процента 56
5. Стандартные показательные и логарифмические уравнения и неравенства 59
5.1. Преобразование логарифмических выражений. Сравнение логарифмических и показательных значений 59
5.2. Простейшие показательные уравнения и неравенства, равносильные преобразования 62
5.3. Простейшие логарифмические уравнения и неравенства, равносильные преобразования 66
5.4. Смешанные задачи 70
6. Линейные и однородные тригонометрические уравнения, системы тригонометрических уравнений, использование ограниченности тригонометрических функций 72
6.1. Линейные тригонометрические уравнения, метод вспомогательного аргумента 72
6.2. Однородные тригонометрические уравнения второй степени, замена тригонометрических выражений 74
6.3. Системы тригонометрических уравнений 77
6.4. Использование ограниченности тригонометрических функций, оценочные неравенства 82
7. Изображение множества точек на координатной плоскости, использование графических иллюстраций в уравнениях и неравенствах различных типов 86
7.1. Геометрические места точек, графики функций, правила линейных преобразований графиков 86
7.2. Плоские геометрические фигуры, применение метода координат 91
7.3. Использование графических иллюстраций при решении уравнений и неравенств 93
8. Элементы математического анализа 96
8.1. Производная, её геометрический и физический смысл. Производные элементарных функций, основные правила дифференцирования функций 96
8.2. Исследование функций с помощью производной 100
8.3. Первообразные элементарных функций, основные правила нахождения первообразных. Вычисление площади плоской фигуры с помощью первообразной 104
9. Текстовые задачи 108
9.1. Скорость, движение и время 108
9.2. Арифметическая и геометрическая прогрессии 110
9.3. Концентрация, смеси и сплавы, массовые и объёмные доли 113
9.4. Целые числа, перебор вариантов, отбор решений 116
10. Раскрытие модулей в уравнениях и неравенствах различных видов 119
10.1. Различные приёмы раскрытия модулей, системы уравнений и неравенств с модулями 119
10.2. Раскрытие модулей в тригонометрических уравнениях 124
10.3. Раскрытие модулей в показательных и логарифмических уравнениях и неравенствах 127
11. Разложение на множители и расщепление в уравнениях и неравенствах различных видов 128
11.1. Понятие расщепления, равносильные преобразования 128
11.2. Расщепление в тригонометрических уравнениях и неравенствах 131
11.3. Расщепление в показательных и логарифмических уравнениях и неравенствах, модифицированный метод интервалов 135
11.4. Смешанные задачи 139
Часть II: Указания и решения 141
1. Преобразование алгебраических выражений, простейшие уравнения и неравенства 141
1.1. Формулы сокращённого умножения, преобразование алгебраических выражений 141
1.2. Сравнение чисел 147
1.3. Модуль числа и алгебраического выражения, уравнения и неравенства с модулем 152
1.4. Квадратный трёхчлен, разложение квадратного трёхчлена на множители, квадратные уравнения и неравенства, теорема Виета 158
2. Рациональные и иррациональные уравнения и неравенства, простейшие системы уравнений 166
2.1. Рациональные уравнения и неравенства, метод интервалов 166
2.2. Простейшие системы уравнений. Подстановка и исключение переменных при решении систем уравнений 177
2.3. Радикалы. Иррациональные уравнения и неравенства, равносильные преобразования 182
2.4. Смешанные задачи 197
3. Преобразование тригонометрических выражений, стандартные тригонометрические уравнения 216
3.1. Соотношения между тригонометрическими функциями одного аргумента, формулы двойного и половинного аргументов 216
3.2. Простейшие тригонометрические уравнения. Разложение на множители, сведение к квадратному уравнению 221
3.3. Применение тригонометрических формул для сведения уравнений к простейшим 230
3.4. Различные задачи на отбор корней 241
4. Стандартные текстовые задачи 254
4.1. Пропорциональные величины 254
4.2. Арифметическая и геометрическая прогрессии 257
4.3. Скорость, движение и время 269
4.4. Работа и производительность 279
4.5. Проценты, формула сложного процента 284
5. Стандартные показательные и логарифмические уравнения и неравенства 289
5.1. Преобразование логарифмических выражений. Сравнение логарифмических и показательных значений 289
5.2. Простейшие показательные уравнения и неравенства, равносильные преобразования 296
5.3. Простейшие логарифмические уравнения и неравенства, равносильные преобразования 309
5.4. Смешанные задачи 327
6. Линейные и однородные тригонометрические уравнения, системы тригонометрических уравнений, использование ограниченности тригонометрических функций 341
6.1. Линейные тригонометрические уравнения, метод вспомогательного аргумента 341
6.2. Однородные тригонометрические уравнения второй степени, замена тригонометрических выражений 349
6.3. Системы тригонометрических уравнений 355
6.4. Использование ограниченности тригонометрических функций, оценочные неравенства 369
7. Изображение множества точек на координатной плоскости, использование графических иллюстраций в уравнениях и неравенствах различных типов 378
7.1. Геометрические места точек, графики функций, правила линейных преобразований графиков 378
7.2. Плоские геометрические фигуры, применение метода координат 386
7.3. Использование графических иллюстраций при решении уравнений и неравенств 395
8. Элементы математического анализа 406
8.1. Производная, её геометрический и физический смысл. Производные элементарных функций, основные правила дифференцирования функций 406
8.2. Исследование функций с помощью производной 409
8.3. Первообразные элементарных функций, основные правила нахождения первообразных. Вычисление площади плоской фигуры с помощью первообразной 417
9. Текстовые задачи 423
9.1. Скорость, движение и время 423
9.2. Арифметическая и геометрическая прогрессии 431
9.3. Концентрация, смеси и сплавы, массовые и объёмные доли 439
9.4. Целые числа, перебор вариантов, отбор решений 448
10. Раскрытие модулей в уравнениях и неравенствах различных видов 458
10.1. Различные приёмы раскрытия модулей, системы уравнений и неравенств с модулями 458
10.2. Раскрытие модулей в тригонометрических уравнениях 470
10.3. Раскрытие модулей в показательных и логарифмических уравнениях и неравенствах 480
11. Разложение на множители и расщепление в уравнениях и неравенствах различных видов 490
11.1. Понятие расщепления, равносильные преобразования 490
11.2. Расщепление в тригонометрических уравнениях и неравенствах 502
11.3. Расщепление в показательных и логарифмических уравнениях и неравенствах, модифицированный метод интервалов 518
11.4. Смешанные задачи 533
Ответы 554
Литература 567.
Рейтинг: | 4.8 баллов / 2537 оценок |
Формат: | Книга |
Уже скачали: | 12843 раз |
Нам показалось, что Книги ниже Вас заинтересуют не меньше. Эти издания Вы так же можете скачивать и читать совершенно бесплатно на сайте!
Название: Сборник книг Алексея Барона Автор: Алексей Барон Год издания: 2000-2008 Страниц: Сборник книг Язык: Русский Формат: FB2 Качество: отличное Размер: 2.9 Мб Описание: ..."ЛЮДИ И ЯЩЕРЫ"... Совс . . .
Название: Собрание сочинений Автор: Максим Горький Год издания: 1892-1936 Страниц: 327 произведений Язык: Русский Формат: FB2 Качество: отличное Размер: 18,1 Мб Описание: Судьба Максима Горького -- о . . .
Название: Под солнцем остается победитель Автор: Алексей Махров Серия или выпуск: В вихре времен - 2 Издательство: АРМАДА: «Издательство Альфа-книга» Год издания: 2009 Страниц: 392 Язык: Русский Фор . . .
Название: Воровка Автор: Марина Милованова Издательство: Альфа-книга ISBN: 978-5-9922-0395-0 Год издания: 2009 Страниц: 320 Язык: Русский Формат: FB2, RTF Качество: отличное Размер: 5 МбОписание: За . . .
Название: Странник Автор: Игорь Чужин Серия или выпуск: Странник- 1 Язык: Русский Формат: fb2/txt/chm/rtf/html Качество: отличное Размер: 5.4 Мб Описание: Молодой сисадмин попадает в другой мир...Так . . .
Название: Теза с нашего двора Автор: Александр Каневский Издательство: Зебра Е, ВКТ ISBN: 978-5-94663-555-7, 978-5-226-00437-7 Год издания: 2008 Страниц: 256 Язык: Русский Формат: fb2 Размер: 1.78 М . . .
Название: Колыбельная для Волчонка Автор: Алина Знаменская Издательство: АСТ, АСТ Москва, Харвест ISBN: 978-5-17-057390-5 Год издания: 2009 Страниц: 320 Язык: Русский Формат: pdf,rtf,html,txt Размер . . .
Название: Путь демона Автор: Алексей Глушановский Серия или выпуск: Путь демона - 4 Издательство: АРМАДА: «Издательство Альфа-книга» Год издания: 2009 Язык: Русский Формат: fb2/txt/chm/rtf/html Каче . . .
Название: Монументальная пропаганда Автор: Владимир Войнович Издательство: Эксмо ISBN: 978-5-699-24257-3 Год издания: 2008 Страниц: 384 Язык: Русский Формат: pdf,rtf,txt Размер: 5,29 МбОписание: Нов . . .
Название: Вечер у Клэр Автор: Гайто Газданов Издательство: Азбука-классика ISBN: 978-5-9985-0314-6 Год издания: 2009 Страниц: 416 Язык: Русский Формат: 4,14 Размер: rtf,txt,pdf МбОписание: Книга изв . . .
Если вы хотите скачивать книги, журналы и аудиокниги бесплатно, без рекламы и без смс, оставлять комментарии и отзывы, учавствовать в различных интересных мероприятиях, получать скидки в книжных магазинах и многое другое, то Вам необходимо зарегистрироваться в нашей Электронной Библиотеке.
К сожалению, в нашей Бесплатной Библиотеке пока нет отзывов о Книге Алгебра, Базовый курс с указаниями и решениями, ЕГЭ, Олимпиады, Экзамены в ВУЗ, Золотарева Н.Д., Попов Ю.А., Семендяева Н.Л., Федотов М.В., 2010. Помогите нам и другим читателям окунуться в сюжет Книги и узнать Ваше мнение. Оставьте свой отзыв или обзор сейчас, это займет у Вас всего-лишь несколько минут.