Численные методы математической физики.


Книга Численные методы математической физики.

Название: Численные методы математической физики
Автор: А. А. Самарский, А. В. Гулин
Издательство: Наука
ISBN: 5-02-013996-3
Год издания: 1989
Страниц: 432
Язык: Русский
Формат: djvu
Размер: 6.53 Мб
Описание:
Излагаются основные принципы построения и исследования численных методов решения на ЭВМ различных классов математических задач. Наряду с традиционными разделами, такими как интерполирование, численное интегрирование, методы решения задачи Коши для обыкновенных дифференциальных уравнений, большое место в книге занимают разностные методы для уравнений в частных производных и итерационные методы решения сеточных уравнений. Для студентов, обучающихся по специальности "Прикладная математика" и "Физика", а также для широкого круга специалистов, применяющих ЭВМ для научных расчетов.
В книге излагаются основы численных методов решения задач алгебры, анализа, обыкновенных дифференциальных уравнений и уравнений математической физики. Книга предназначена для студентов вузов, специализирующихся в области прикладной математики. Она может оказаться полезной также студентам других специальностей, желающим получить представление о методах решения математических задач с помощью ЭВМ. Книга основана на курсе лекций, который читался в течение ряда лет студентам факультета вычислительной математики и кибернетики Московского университета.
В курсах численных методов изучаются вопросы построения, применения и теоретического обоснования алгоритмов приближенного решения различных классов математических задач. В настоящее время большинство вычислительных алгоритмов ориентировано на использование быстродействующих ЭВМ, что существенно влияет на отбор учебного материала и на характер его изложения. Следует отметить некоторые особенности предмета численных методов. Во-первых, для численных методов характерна множественность, т. е. возможность решить одну и ту же задачу различными методами. Во-вторых, вновь возникающие естественно-научные задачи и быстрое развитие вычислительной техники вынуждают переоценивать значение существующих алгоритмов и приводят к созданию новых. Перечисленные особенности предмета, его обширность и неоднородность делают иллюзорной попытку изложить предмет "во всей полноте и строгости". По. гаму авторы настоящей книги поставили перед собой задачу собрать минимальный материал, достаточный для дальнейшей работы выпускников вузов в области применения и создания вычислительных методов.
Вычислительный алгоритм естественно рассматривать как необходимую составную часть вычислительного эксперимента - эффективного метода решения крупных естественно-научных и народнохозяйственных задач. С этих позиций и ведется изложение численных методов в данной книге. Рассматриваются только те методы, которые выдержали испытание практикой и применяются для решения реальных задач. Наибольшее внимание уделяется фундаментальным разделам численных методов - численному решению систем линейных алгебраических уравнений и разностным методам решения задач математической физики. В то же время авторы сознают, что многие интересные и важные методы изложены недостаточно полно или совсем не вошли в книгу. За рамками книги остались такие этапы вычислительного эксперимента, как построение математической модели, программирование и организация вычислений. В тех случаях, когда подробное изложение численного метода оказывалось слишком громоздким, содержало много выкладок или опиралось на труднодоступный студентам математический аппарат, авторы предпочитали ограничиться характерными примерами.
Книга состоит из трех частей. Часть I является вводной, в ней дается представление о месте численных методов в общем процессе математического моделирования и вычислительного эксперимента, а также рассматриваются на уровне примеров некоторые вычислительные алгоритмы. В части II излагаются традиционные разделы численных методов, такие как прямые и итерационные методы решения систем линейных алгебраических уравнений, интерполирование, численное интегрирование, решение нелинейных уравнений, методы решения задачи Коши для обыкновенных дифференциальных уравнений. Может возникнуть вопрос, зачем нужно столь подробно излагать методы, для большинства из которых уже давно существует хорошо зарекомендовавшая себя программная реализация? Дело в том, что сознательное использование существующих программ и тем более создание новых улучшенных версий вряд ли возможно без изучения самих методов и связанных с ними теоретических представлений. В части III рассматриваются разностные методы решения задач математической физики. Здесь большое внимание уделяется принципам построения разностных схем для различных задач, исследованию их устойчивости и сходимости, методам решения сеточных уравнений.
Для чтения части II требуется знание алгебры, анализа и обыкновенных дифференциальных уравнений в объеме одного-двух курсов вузовского обучения. Часть III предполагает знакомство с постановкой типичных задач математической физики. Каких-либо специальных предварительных сведений из области вычислительной математики не требуется. Предполагается, что одновременно с изучением данного курса читатель овладевает навыками решения задач с помощью ЭВМ, а также участвует в работе студенческого семинара по численным методам.

Рейтинг: 4.8 баллов / 2537 оценок
Формат: Книга
Уже скачали: 12875 раз



Похожие Книги

Нам показалось, что Книги ниже Вас заинтересуют не меньше. Эти издания Вы так же можете скачивать и читать совершенно бесплатно на сайте!


Вы не зарегистрированы!

Если вы хотите скачивать книги, журналы и аудиокниги бесплатно, без рекламы и без смс, оставлять комментарии и отзывы, учавствовать в различных интересных мероприятиях, получать скидки в книжных магазинах и многое другое, то Вам необходимо зарегистрироваться в нашей Электронной Библиотеке.

Отзывы читателей


Ой!

К сожалению, в нашей Бесплатной Библиотеке пока нет отзывов о Книге Численные методы математической физики.. Помогите нам и другим читателям окунуться в сюжет Книги и узнать Ваше мнение. Оставьте свой отзыв или обзор сейчас, это займет у Вас всего-лишь несколько минут.